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Midterm Examination ” Geodynamics” March 4, 2015

Solve the following problems from the provided copied pages of the syllabus:
o Problem 15 (page 13+14) !
® Problem 29 (page 28). 2

Extra problem

1. Discuss the geotherm in the core-mantle boundary region schematically illustrated in
Fig.7 of the syllabus.

2. What are the implications of this particular geotherm for the dynamical state of the
Earth’s mantle.

3. Discuss the mineral phase transition from perovskite into the high-pressure form post-
perovskite and explain the importance of seismic observation of this phase boundary in
view of the previous items 1 and 2.

4. Discuss the phase transition of the olivine(ringwoodite) into perovskite plus magnesium-
iron oxide(wuestite). Explain is its role in constraining the geotherm and also how this
transition influences mantle convective circulation?

!For the reference to eqn. {15) the Poisson equation should be substituted, V?U = 4xGp. For the special case of
a spherically symmetric density distribution this can be written as: &y L7720 = 4nGp.

2The adiabatic geotherm refered to in problem 29 can be formulated in terms of a depth coordinate as: Ta(z) =
Ta(0)exp(=/ Hr).
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¢ A so called ‘core catastrophe’ occured when the iron/nickle core of the Earth differentiated
from the silicate mantle in the first few million years after the formation of the Earth in the
early solar system. This event has probably freed enough potential energy to melt the mantle
completely, resulting in a global magma ocean.

e Crystallization of the solid inner core from the liquid outer core, as a result of core cooling, is
accompanied by compositional differentiation. The liquid outer core contains a lighter fraction,
possibly sulfur, which stays behind in the liquid during freezing of the inner core. The enriched
residual liquid near the inner core boundary is less dense than the average liquid of the outer
core and this results in a gravitationally unstable layering that induces ‘chemically driven’
convective flow in the outer core. The potential energy released in this chemical convection is
probably an important energy source in powering the geodynamo that generates the Earth'’s
present day magnetic field.

2.5 The gravity and pressure field for parameterized density models with self-
gravitation

In the following probiems a number of simple density distributions are investigated that will serve
as a reference for models more constrained by geophysical observations to be introduced in later
sections. The gravity field can be determined by solving the governing Poisson equation (15) using
suitable boundary conditions. For the special case of spherically symmetric mass distributions simple
1-D integral expressions can be used to derive the corresponding radial pressure distribution.

problem: 15 The infernal and external gravily field for o simple mode! of a planel can by derived by solving
the Poisson equation {15}, and applying uppropriate boundary conditions to the yenerul solution. Consider a
spherically symmelric planet of radius R and uniform density py.

1. Derive expressions for the gravity potentiol field U and the gravity force field g = |g| inside and outside
the planel.
Hinls: Solve Poisson’s equation in spherical coordinates for the interior (r < R) and exterior domein
r > R separately. The separate solutions for the inlervior Uiy, gine end exterior Uy, 9oy domain
each contuin twe integration constents which can be deiermined by applying the following boundary
conditions,

rl—lbrgo Uezt(r) =0, ’]_i_r:}]gmt(r) = o (26)

Continuly of the gravily accelaration g al the surface r = R,

Gint(R) = gezt(R) (27)
Continuity of the grovity polentiel U al the surface r = R,
Uine(R) = Ucz:t(R) (28)
Answers
4m 2w IGAM
Gint = ?Gpol" 1 Uln.t = ?GPOTZ - ET (29)

where M = 4T”R‘"‘p{) is the planet mass and G is the gravitational constant.

GAf GM
Gext = —5~ » Uc::t e (30)
r r
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2. Verify that the external gravity force field is identical Lo the field of a concentrated point mass at r = 0.
Derive ¢ corresponding relation belween the internal gravity force field and a (differcnt) concentrated
point mass, m(r) at the center (see also (31)).

3. Derive an expression for the rudial distribution of the pressure in the planetary interior and compute
the central pressure for a cuse with pp = 5.5 - 10%kgm = and It = 6.371 x 10%m.

Solution: P(r) = ZpiG (R? - r?)

The gravity field of a spherically symmetric density distribution is identical to the field of an equiv-
alent point-mass. This can be formulated as follows,

g(r) = GT:,,(T'), m(r) = / pdV = / p(rYdmr2dr’ (31)
- Vir) 0

Here m(r) is the mass inside a sphere of radius r and g(r) is the corresponding magnitude of
the gravity acceleration. For the corresponding gravity potential this implies, with frx’ ﬁ%dr’ =
U(oo) = U(r) = =U{r),

> dU > o © Gm(r
UM:-fzywzf mﬂwzf wwmu_f é)w (32)
r r r r
where the radial vector component g, hias been expressed in the vector length g, = g-e, = —g.

To derive (31), the potential field at the radial coordinate r can be split in contributions origi-
nating from an internal- and external density distribution U{r) = U;(r)-+U.(r). With corresponding
pairs, U; © p;, and U, & po, where p.(r') = 0, ¥ < r, and pe(r') = p{r’), r’ > r. This follows from
the linearity of the governing Poisson equation.

The field generated by the infernal mass distribution is obtained by integrating the corresponding
Poisson equation in spherical coordinates,

1 d )dU By
ﬁ}ﬁrr—d—r: = dwGp; (-;3)
Td o pdUi\ L, [T A2 .
fo o (r o ) dr’ = /0 dnGpr'=dr (34)
The radial component of the gravity acceleration becomes,
oo dUE 1 [T m,._ Gm(r)
g (r) = - - fo drGpr'sdr = 2 (35)

Furthermore the acceleration field g, from the external mass distribution p. for internal evaluation
points 7' < r is zero. The corresponding gravity potential U, is uniform, which follows from the
relevant Poisson equation, in spherical coordinates for a spherically symmetric mass distribution,

1 d ,,dU, ndU, dU, A
el H-F;tlﬂcv'per(]—)r _r=A-+gc(r’)=_drf=—E (36)
A non-singular ficld requires A =0, g.(+') =0, 7 <0 and,
dU,
=0 -+ U{r'Y=B, r <r (37)

dr’
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Starting from these anchor points the temperature is then extrapolated from both sides to the
core mantle boundary at 2900 km depth. For this temperature extrapolation assumptions have to
be made about the dominant heat transport mechanism and in this case it is assumed that heat
transport operates mainly through thermal convection. This will be further investigated in later
sections dealing with heat transport in the Earth’s mantle.
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Figure 7: Schematic radial temperuture distribution in the mantle and core, constrained by major phuse
transitions {Boehler, 1996}, {UM-upper mantle, LM lower mantle, OC outer core, IC inncr core). The
temperature of the upper/lower mantle boundury is construined by the v-spinel to postspinel phase trunsition
at 660 km depth. The temperature at the inner/outer core boundary at 5150 km depth (radius 1220 km) 1s
constrained by the melting temperature of the hypothetical core ‘Fe-0-S' ulloy. The right hand frame shows a
schematic core temperature distribution (yeothern) labeled ‘CORE ADIABAT? in the liquid outer core versus
pressure and the melting curve (liquidus) of the core *Fe-0-5' alloy. (CMB core-mantle boundury, ICB inner
core boundury). The ICB is determined by the intersection of the liquidus and the geotherm. During core
cooling the [CB moves oulward us the inner corc grows by crystallisation.

problem: 29 Estimale the lemperature near the bottom of the mantle by ediabatic extrupolation of the
temperature Tgeo ~ 1900K of the phuse transition neer 660 km depth, to the depth of the core mantle
boundary. using the general expression for the adiabat in a homoyeneous luyer.

Hunts: apply the result of problem 27 and assume uniform values of the ‘scale height purameter’ Hy =
(agfep)™!, witha = 2. 107K}, g = 10ms™2, cp = 1250Jkg 'K~ Further: approzimate the adicbat by
a linear depth function, in agreement with the schematic dwgram of Fig. 7. to oblain a wniform adigbatic
temperuture gradient.






