Midterm examination Computational Geophysics
May 27, 2015, 13:15-15:00
Room BBL 115

Solve the following problems from the printout of the course notes:
o 28, 2.9 210, 21, 247
* 38340
ol
e 6.3

Give clear explanations with your derivations and argumentation in answering the questions.
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Note that we have used a virtual gridpoint py42 at a distant Az outside the domain. For
the temperature in this virtual point we find from (2.19) {neglecting the second order term
in Az),

QNrIAZ

Trya =Ty +27

(2.20)

Using (2.20) we can formulate the discrete equation in the boundary point py..;, resulting
in,

d7] 2k ) 2k
(Pep) i1 % = F[']N -7N+|]+EWT+I+WN+1 (2.21)

We see that the inhomogencous boundary condition results in a contribution to the right-
hand side vector. Note that the coefficient matrix A is no longer symmetric. However
symmetry can easily be obtained by dividing the equation for the boundary point by 2.

problem 2.5. (2.20) shows that (2,19} is equivalent to a linear extrapolation of the tempercture
field. Show by Taylor expansion that the approzimation of the boundury condition applied in (2.19)
is indeed of second order accuracy in Az and show that a forward difference formula results in first
order accurney.

2.2 A difference method with variable grid spacing

In the derivation of the finite difference method for the heat equation based on central
difference approximation of the conduction term we used an equidistant grid of nodal
points. We further assumed that the thermal conductivity coefficient was a constant.

'To obtain sufficient accuracy in the numerical solution it may be necessary to use many
gridpoints in a high resolution mesh, resulting in larger program requirements for memory
and compute time. Such mesh refinement is applied on the whole domain in case of an
equidistant grid whereas increased resolution may be necessary only on part of the domain
where the solution shows strong variations (large gradient). It is clear that in such cases
using equidistant grids is not. efficient and methods allowing local grid refinement will be
more efficient. Different methods exist allowing local refinement. In later chapters we focus
on so called finite element methods which offer the most flexibility in local grid refinement
of well known discretization methods.

As an example of a method allowing local grid refinement we treat here an other dif-
ference method which also includes a simple treatment of variable coefficients k{z). We
restrict ourselves again to the 1-D case. A 2-D generalization is introduced in Chapter 3.
The method introduced here is known in the literature as a finite volume method. We first
deal with the steady state problem and shall verify afterwards how this can be extended
for time dependent problems.

2.2.1 Discretization of the equation

In the finite volume method the partial differential equation (PDE) is integrated over small
grid cell’s, the so called finite volumes. In our 1-D case the finite volumes are subintervals
I, of the complete domain, the interval [ = [0, L].

These subintervals I; = [z, |, zm,], centered at nodalpoint p;, are illustrated Fig.2.
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Figure 2.2: Detail of ¢ 1-D grid with two grid segments and a inlegration interval
of finite volume [,.

The mid-points of the grid cells, which span the finite volumes, are labeled m;. Inte-
gration of the steady state heat equation over I; yields,

fmm (diz"(z)f;’f + p(z)H(:)) dz =

d’!‘] Zm;

- ™ p(}H(z)dz =0 (2.22)

Zm; g myoy

[k(z) g

The remaining derivative in (2.22) is evaluated in the mid-points m;_; and m;. We
approximate these derivatives by their central difference approximations in terms of the

neighboring nodal point values and we define k(zm,) = & and 25, = 2z, = h;.
(kg) ~ b Tig—1; =ki1i+1—1; (2.23)
dz /;,, Zpis1 T ¥ hi
r, o 1__ v _ 111_
(k‘”) sy BTy Lot (2.24)
dz Em;_y zpl' - sz‘-l h‘_l

The distribution of the heat productivity H is assumed to be known and we define,

f ™ p(2)H(z)dz = F (2.25)

Emgoy

Substitution of (2.23),(2.24) and {2.25) in (2.22) gives,

ki1 (ki-l k;) Ky
e I —_— —|Ti—-=Tinu=F 2.26
hi-l -1k hi-l s h,’ ! h,‘ ik : ( )
Equation (2.26) is a linear algebraic equation in the unknown nodal point values of the
temperature T;. By repeating the integration proces for all N finite volumes f; we obtain
a system of linear equations.
The resulting system of equations written in matrix form is,

AT =F (2:27)

problem 2.6. Verify that the system of equations obtained above is complele in case of prescribed
boundary temperatures in z = G and = = L.

problem 2.7. Show that ihe system of equations build from (2.26) is identical to the equations
oblained in the previous section for the special case of an eguidistant grid and uniform coefficient k
and piecewise uniform inlernal heating H (see problem 2.9).
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problem 2.8. Show tha! the malriz A is o symmetric tri-dingonal matrix, ie. Ajj = Ay,
AIJ = 0,fi - ji>L

problem 2.9. Suppose we whish to apply the finite volume method to ¢ 1-D medium consisting of
a stack of layers with untform conduciivity in each layer and that the conductivity is discontinuous
in the layer interfaces. The conductivity model in this case is said lo be piecewise uniform and
consists of a list of discrele layer conductivily values k;. Where would you put the nodal points in
this model such that all the necessary entilies in the derivation above are well defined?

problem 2.‘]?0. |Suppose we define the heat productivity coefficient H(z) by e piccewtse constant
model. Verify the following formula for the righthand side vector elements,

Sl r hi-— r hl ]
F:' - f P(Z)HL_Z)dZ e ""2—£‘P|.zm...| )H(zml-l) + FP{zm. )H'\zﬂ’h) (2'28)

LT

problem 2.11. Assume that the heatproductivity is concentrated in e point, z = z,, W{z) =
p(2}H(z) = W, b(z — z;), with z;m,_, < 2, < Zm,, 1.6. 25 € [},

Derwe for the righthand side vector elements, F; = Wydyy., where 6, is the Kronecker deltn
symbol.

problem 2.12. Investigate how the steady state equation (2.27) con be extended to u set of ODE's
similar to (2.14) for the time dependent case. How would you treat a ease wnth variable heat capacity
pcp in this extension?

2.2.2 Implementation of houndary conditions

Essential boundary conditions are implemented in the same way as in the discretization
method of section 2.1. Essential boundary conditions result in a contribution to the right-
hand side vector and a reduction of the number of degrees of freedom of the problem. Here
we describe the implementation of natural or Neumann boundary conditions that are used
in case the heatflow density is prescribed on the boundary.

We define (kd1'/dz),.., . = qn+1- The implementation differs from the one described
in section 2.1.1 for an equidistant grid. Here we derive the implementation for the boundary
condition in nodal point py41, illustrated in Fig.3.
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Figure 2.3: Detail of a 1-D grid with two grid segmenis including a boundary
point and two finite volumes.

In this case the temperature in the boundary point py . is also a degree of freedom of
the problem. In order to obtain a complete set. of equations we need to introduce an extra
equation by integrating over a (half) finite volume from my to py.i. We apply (2.22) for
the nodal points py and py4.
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nodal point values of the potential function. The matrix corresponding to these equations
is defined S.

The bandwidth w of this matrix S is defined by the location of non-zero diagonals in
the upper and lower triangle matrix, excluding the main diagonal,

w=mar|ll -J|, S;;#£0 (3.10)

According to this definition a diagonal matrix has a zero bandwidth and tri-diagonal matrix
has a bandwidth of one. Interpreting the expression (3.9) as a matrix row in a system of
linear algebraic equations it follows that the bandwidth w = n;... From this we find that
the smallest bandwidth is obtained by defining the grid columns in the direction of the
smallest dimension of the rectangular domain. Efficient algorithms are available for the
solution of systems of linear algebraic equations that are based on a so called bandmatrix
structure where only matrix elements within the bandwidth defined in (3.10) are stored in
computer memary. Minimizing the bandwith of the matrix will result in minimizing the
computer requirements (memory, compute time) when using such bandmatrix solvers.

problem 3.3. The operulor D} in (3.9), applied to the nodal point values of e uniform grid,
produces a system of linear algebraic equations for a discrete approzimation of {3.1). Consider the
special case of a rectangular grid with two rows of inlernal gridpoints and apply a (grid) columnwise
numbering of the degrees of freedom of the problem as in (3.8).
What s the structure of the mairiz S of the resulting system?

3.3 A difference method for variable grid spacing and vari-
able coefficient

The difference formula for the Laplace operator (3.6) is derived for the special case of a
uniform coefficient ¢ and does not apply to the more general case with differential operator
L =V - ¢(x)Vu. Besides this the grid used in section 3.2 is equidistant.

Here we introduce the more general case with variable coefficient and apply a so called
structured grid, defined by the product of two 1-D grids with variable nodal point spacing
in both coordinate directions. This allows local mesh refinement. We consider a 2-D rect-
angular domain subdivided in rectangular grid cells spanned by the nodalpeints, illustrated
in Fig. 3.1. Similar as in 2.2, but now for a 2-D domain, we integrate the PDE (3.1} over
a small area, a finite volume, surrounding a single gridpoint Py, illustrated in Fig. 3.1.

Relative coordinates of neighboring gridpoints of Py, shown in Fig. 3.1, are parameter-
ized as follows,

Py = (0,0)
Py = (5h,0}
Py = (0,52h)

P] = (—33!1,0)
Py (0,—s:h), 0=sxp <1, K=1,....4 (3.11)
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Figure 8.1: Left: rectangular compulational domain showing local mesh refine-
ment and a single (dashed) finite volume. Right: zoom-in finite volume with
five grid points in a mesh with variable grid point spacing. My, K = 1,...,4
are midpoints positioncd halfway two neighboring gridpoints Fy, Pr. A difference
equation is derived by infegration over the rectangle spanned by the corner points

Cir-.-, Ca-

The PDE (3.1} is integrated over the rectangular area V' spanned by the coruer points
Ch, ..., Cyin Fig.3.1, that are the centre points of the neighboring grid cells.

I j; V- ofx)Vu dV = fa 0y ny dd = - /; f(x)av (3.12)

where 9V is the closed boundary curve Cy,Cy, Cy4,Cy,C;. The contribution from the
vertical boundary segnents in (3.12) is

a3h/2

n-t= " (00 o= [

/2 (e(x)0ru),. sahs2 QY (3.13)

|l-"2

Boath integrals in (3.13) are approximated using a ‘tnid-point rule’ and the remaining partial
derivative is replaced by a central difference approximation,

u( P} = u(Fo)

Oru(d) = e {3.14)
The first integral in {3.13) results in,
+
I = (M) (u(P) = u(Po)) 5~ (3.15)
In a similar way we find,
Sy 45
I = o My) (u(Po) = u(Py)) =5 — (3.16)
The horizontal boundaries result in simnilar contributions,
s1h/2 4 851 + 83 -
Ih= {e(x)dyu),. aghyz 43 = o AL) (w(P2) — u(Pp)) ——— (3.17)
s 283
si1h/2 + 5
l—f’ lzif—'(x)oy“)l.- a2 4z = (M) (u(Po) = u(Fy)) 312 T =4 (3.18)
3
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Putting the segment contributions together ? in,

I=h-hL+-1I; (3.19)
we obtain,
4
I= agu{ Pr) — agu(Py) (3.20)
K=l

The coetficients in (3.20) are given in the Lable.

K ar

0 Z?\':l aK

1 | e(Ah)(s2 + 54)/25)
2 | e{M2)(s1 + 83)/ 252
3 | o(Ms)(s2 + 54)/253
4 | c(My){s1 + 53)/254

Table 3.1: Coeflicients of the five-point finite difference ‘molecule’.

Using a 2-D mid-point rule, the right hand side term in (3.12) is approximated by,

fv f(x) dV = f(Ro)(s1 + sa)(s2 + 34)§ =F {3.21)

For the special case of an equidistant mesh the above results reduce to,
c{My) JH=1,....4
Thare(dy) K =0

Combination of (3.1),{3.20) and (3.21) results in the following difference equation for the
nodalpoint. Py,

sp=1 = ap= { , F=hzf{Pu} {3.22)

4
aou{Po) = ) axu(Pg)=F (3.23)
K=1
By evaluating the finite difference formula (3.23) for every nodal point we obtain a system
of linear algebraic equations that can be solved numerically. Each nodal point corresponds
to a single equation in this set or to a single row of the corresponding coefficient matrix.

problem 3.4. Verify that the difference formula {3.23) corresponds to the five-point formula
derived in the previous section in the special case of an equidisian! mesh and a uniform coefficient

(e(x) = ),

4
du(Ry) = Y u(Py) = &l ()

[
K=1

problem 3.5. Ertend the derivation of the finite difference formula (3.23) derived for the steady
state heat conduction problem (3.1) for the time dependent problem described by,

pc,,% =V -kVT+ H (3.25)

Hint: Consider a semi-discretization, leaving the continyous time variable in place to derive a system
of first order ordinery differential equations similar fo the 1-D case (2.14).

¥The minus sign for the contributions fa, Is accounts for the direction of the outward pointing normal
vector on the corresponding boundary segments. Vu-n = —8zu on the left hand vertical boundary segment
and Vu:n = =3yu on the bottom boundary.
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problem 3.8. Derive an expression for the right hand side vector element F for the case where
the righthand side function represents a point source f{x) = ad(x — x,}, where a is a constant.

Figure 3.2 shows the structure diagram of an algorithm for filling the coefficient matrix that
follows from evaluation of (3.24) in al! the internal points of the mesh for the special case of
an equidistant mesh and uniformn coeffient c{x) = 1. A 2-D rectangular domain V is used
and a grid consisting of ngy + 2 columns and n,sy + 2 rows of nodal points. Furthermore
the algorithm assumes that essential boundary conditions are given for all boundary points
(8V =Ty, Ty =0). In that case the discretized problem has nroy % e = N degrees of
freedom - one for each internal nodal point. The degrees of freedom are numbered column-
wise in the grid of nodal points. This way an N-vector U is defined of unknown nodal
point values.

U= (uzim) ulzny) . ouwl@, Unw )
(3.26)
u(I"-.al ] )i u(I"cal b yg)’ ODOL) u(Iﬂml * y"rnw)’ )T
In this case with essential boundary conditions on the complete boundary, evaluating the
difference equation (3.24) in every nodal point results in a complete system of equations.

problem 3.7. Verify that the malriz of the above finite difference equaetions is symmelric end that
the matriz rows outside the main diagonal and four other diugonals conlain zero values. Show for
the banduntdh mn (3.10): w = nroy.

_problem 3.8. Extend the elyorithm of Fig. 3.2 with the computation of a right hand side vector
Jor the system of finite difference equations.

problem 3.9. Verify how the symmelry of the malriz con be applied lo oplimize the algorithm of
Fig. 5.2.

problem 3.10. How could the algorithm of Fiy. 3.2 be modified for the case of variable coefficient
ofx)?

Hint: consider the equidistunt case end apply (3.22).

problem 3.11. How could the algorithm of Fig. 3.2 be extended for the case of variable coefficient

c(x) and verigble grid spacing?

3.4 Implementation of boundary conditions

We distinguish between essential boundary conditions with prescribed values of the solution
u(x} and natural boundary conditions where the normal component of the gradient ¢{x)Vu-
n is prescribed in boundary peints x.

3.4.1 Essential boundary conditions

An implementation of essential boundary conditions follows directly from the difference
equation,

1
agu(Po) - Z agul{Py)=F (3.27)
K=l

‘Terms in (3.27) with prescribed values of u in boundary points x; € I'y can be moved
to the right hand side of the equation. Essential boundary conditions thus contribute to
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ncel - number columne jntermal nodal points
arow - pumber rows intarnal nodal points
idef - sequenca number degree of freedom for nodal point {irow,jcol)

for a constant coefficiaont and equidistant mesh:
e} = 4. - pain diagonaal element difference formula
el = -1, - alements of second diagonal

I
| *loop over columns internal nodal points
I
| do jecol = 1, ncol
|
| *loop over rows internal nodal points
|

| do irow = i, arow

sgeq. number d.o.f. central point
idof = (jcol-1)*nrow + irow

*left

T jeol > 1 F

|
jdot = idof - nrow | * column 1 nod.point
elmat = el |  zero contrib. matrix
call filloat(elmat,idof,jdof,matrix)|

*right

T jeol < peol F

}
jdof » idof + nrow | * last column nod.point
elmat = el I zaro contrib, matrix
call fillmat{elmat,idof,jdof, ,matrix)|

I

schack above

T irow < nrow F

|
Jdof = idof + 1 | * top rov of nodal points
elmat = gl | zare contrib. matrix
call fillmat(elmat,idof,jdof ,matrix)|

|

scheck below

T irow > 1 F

elmat = el zaro contrib, patrixz

|
jdof = idot - 1 | * bottom row of nodal pointa
I
call fillmat{elmat,idof,jdot ,matriz)|

*contral point {diagomal matrix element)
jdof = idof
elmat = e0; call fillmat(elmat,idef,jdof,patrix)

Figure 3.2: Structure diegram of an algorithm to fill the coeffictent matriz of
the finite difference equations. The subrouline £illmat is used for storing the
mautriz elements in an erray matrix. This way the sparse structure of the mairiz
can be ezploited in an eesy way.
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the right liand side vector of the systemn of equations. This can be made more explicit by
partitioning the vector of nodal point values U = (U, U,)7T, where U, is the vector of
prescribed (boundary) nodal point values, and Uy the vector of remaining (free) unknown
nodal point values, the degrees of freedom. The matrix 8 and right hand side vector F
partition correspondingly,

( Spr Spp )(Uf, U,)" = Fy (3.28)

By writing the multiplications of the partitioned matrix blocks in (3.28) explicitly we see
that the vector part of unknown nodal point values Uy can be solved from the following
reduced system of equations,

SpsUyp=F;=SpUp =Ry (3.29)
Note that Fy does not oceur in (3.29).

problem 3.12. How could the algorithm in Fig. 3.2 be extended to account for the contribution
of inhomogeneous essential boundury condilions in the right hand side vector?

3.4.2 Natural boundary conditions

Implementation of natural boundary conditions is less straight forward. It is clear that
the nmnber of degrees of freedown of the problemn is now greater than in the previnus case
since the nodal point values corresponding to points xx € [, are also degrees of freedom.
In order to get a complete set of equations, difference equations must be formulated that
include these degrees of freedom for xj € ', This is done by integrating the differentinl
equation over finite volumes associated with the boundary points x4 € Ty, as illustrated
in Fig. 3.3. In the integration aver the vertical boundaries of the cell, the integral I3 over
the segment MMy C T can be expressed in the known boundary value o Po)d-u{Fy).
This results in a contribution to the right hand side vector. Note that here the integration
is over a reduced area compared to intcrior grid cells. The expressions for the resulting
matrix coefficients differ from the ones for interior nodal points.

Py
Q
M, C,
Py M,
@ 2 e P
M,y Cy
P, b

Figure 3.3: Integration over a grid cell associated with o boundary point xi €
[n. The interior of the computational domain is on the right hand side of the
boundary sequent Py, Py, Py, The yrid line Py Py Py is part of the bondary Ty, with

natural boundary conditions.
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(4.4) of the solution u is defined as an interpolation in terms of the nodal point values
u(:i:,;) = UJ,

N
u(z) = ut(z) = Y UsNy(a) (4.13)
J=1

‘Fhis is illustrated for the one-dimensional linear element with two nodal points per element
(ne = 2),

1 _E-—I3 l _ -
li(z) = P h(mg z) {d.14)
)= 225 = L — ) (4.15)

Both parts of this piecewise linear basis function are illustrated in Fig. 4.1.

problem 4.3. Show that the so called trapezoidal rule for approrimation of integrals *
follows directly from an expansion as in (4.13), using equidistant eveluaiion points xj.
Also derive a corresponding trepezoidal rule for the general case with variable grid spucing.

4.2 Discretization of the differential equation

The finite element method is introduced here as a special case of the method of Galerkin
for solving differential equations. Galerkins method is defined in the following way: for a
given differential equation Lu = f, the residual funciion B = Lu — f is multiplied by a
weighting function w; and integrated over the domain,

-/;w;(Lu—f) dv =0, I=12,... (4.17)

The linearly independent weighting functions wy(x} span a linear function space S. When
the integral expression in (4.17) is interpreted as a special case of the general functional
innerproduct of the functions p, g € S,

(v-0)= | plx)alx) av (418)

then the equation (4.17), (wy - R} = 0, specifies the condition for the solution u that the
residue of the differential equation is orthogonal to the vector space S spanned by the
weighting functions wy, in the sense of the inner product (4.18).

We shall further use the special case where the weighting functions and the basis func-
tions Ny used in the expansion 3 of the solution u are identical. This is known in the

2

b N
Azf2, J=1IN
I=/I(I)drﬂh=zuif(’”)’ w’={ :CA/:c, 1c:J|<N (1.16)
L J=1

http://fen.wikipedia.org/wiki/Trapezoidal rule
IFor the general m-dimensional case a generalization of (4.13) is used,

=
u(x) = u'(x) =Y UsNs(x) {4.19)

J=
Where u(x) and Ns(x) are functions of the m spatial coordinates x = (z1,...,Tm) of the m-dimensional

domain.
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T and Ty respectively. We assume a horizontal symmetry condition on the vertical boundaries.
Which formulations from (6.3,6.4) shall we choose to implement the boundary conditions on the four
boundaries of the domain? How does this change if we prescribe the mantle heatflow q instead of
the mantle temperature?

An example of the mixed type boundary condition (6.5) is found in heat tranport
problems in cases where the heatflow density through the boundary I'; is assumed to be
proportional to the temperature contrast across the boundary (a so called radiation condi-
tion). With the heatflow density defined by q = —cVu, we obtain from (6.5),

Gn=o (u - i) (6.6)

84

we see that r/a acts as a reference temperature in defining the temperature contrast driving
the heatflow across the boundary. « can be interpreted as the inverse of a thermal resistence
coefficient.

problem 6.2. We whish to medel numerically a physical {lab} Rayleigh-Benard thermal convection
experiment. In this ezperiment viscous fluid in a {ank is heated from below and cooled from the top.
The fluid layer of thickness h is bounded below and above by copper layers of thickness I. The
lemperalure of the exterior surface of the copper layers is kept at constant values Ty + AT end Ty
Jor the bottorm and top respectively by separute circuits of heating/cooling liquid in contact with the
bottom and lop copper plates.

How can we epply boundary condition type (6.5} to this problem.

Hint: neglect horizontal heat transport in the copper plates and assume that the heatflow density
qn(z) can be deseribed in terms of the local temperature conlrast aeross the copper plates.

6.1 Discretization of the equation

We shall first describe a finite element solution for the elliptic problem based on general
element types for 2-D or 3-D problems similar to the description in Chapter 4. In later
sections more detailed examples will be given of such solutions for 2-D triangular elements
combined with linear basis functions and quadrilateral elements with bi-linear basis func-
tions.

In the Bubnov-Galerkin formulation the partial differential equation is transformed by
integration over the domain, resulting in a systermn of linear algebraic equations.

va,{—v-cvu-f} V=0 I=1,..,N (6.7)
Where IV is the number of degrees of freedom. Integrating by parts gives,
f (V- (N1cVu) + YN - Vu — Ni f} dV =0 (6.8)
‘_f
-f N,cvu.ndA+[ VN, cVu dV = fVN;f v, I=1,...,N (6.9)
oV v

Substitution of the expansion in interpolating Lagrangian basis functions,

u(x) =Y UsNy(x), Us = u(xs) (6.10)
J
we get for the second term in (6.9)

3 {/; UN; - cVN, dV} Uy =381 Uy (6.11)
J J
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where the stiffness matrix S is defined by,
8= /V VN; - YNy dV (6.12)

The expression for 8 is often rewritten in a different form that is also used in later chaplers
on vector problems dealing with elastic deformation and viscous How. To this end we
introduce a matrix B where the matrix columns are defined in terms of the gradient of the
finite element basis functions. For a 3-D problem this gives,

alNl,...,alNN
B=(VN,...,VNy) = | 82Ny,...,0:Ny {(6.13)
N, ..., 3Ny
or alternatively,
o
B=| & |(M,....,Nx) (6.14)
63.

The column vectors of the matrix B are,
B;=VN; = (ajN],agN;,a;;Nf)T (6.15)

For the coefficients of the stiffness matrix we get,
Sis =f CUN; - VN dV = /VB; DB, dV = LB}’"DBJ av (6.16)
v

where B; and B are columnvectors and Dy; = edy, i, = 1,2,3. The global stiffness
matrix can be written as a summation of matrices and assembled from the contributions
of element matrices,

s=[B™DBav =Y [ BTDBaV =3 s (6.17)
v K YEk IS

where S8 is the element matrix of element ex. I'he summation over elements corresponds
to the matrix assetnbly proces described for 1-D cases in Chapter 5.

problem 6.3. Derive the following expressions for the element matriz 8'%) for ¢ 1-D element

unth two degrees of freedom and a 2-D trianguler element with three degrees of freedom. For the
1-D element,

dNy dN, diN) dN.
Si#) _f c( - )dz (6.18)
e diN, diN;  dNg dN.
=

And for a 2-D truingular element, essocialed with 3 degrees of freedom and 3 basis functions iniro-
duced in section 6.2.1,

glk)  _ f
ek

¢ | B:NaBNy 4 8,NBy N1 (8:N2)2+ (0,N2)2 8, Nad: Ny + 8, Nady Ny

4

(8,N.)2 . (Ble)z 82N181N2+3,,N;3,,N2 N O Ny + ByNIB,,N;,

Ge N3O Ny + By NuBy Ny G N3O N3 + Oy NaByNo (8- Ny)? + (8, Ny)?

where local numbering (per element] of the basis funciions has been applied.

dzdy



