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Midterm examination Computational Geophysics
June 27, 2012, 13:15-15:00,
Room BBL 065

Solve the following problems 3.2-3.3, 5.10, 5.11 in the printout from Chapters 3 and 5 of the

coursenotes.
Give clear explanations with your derivations and argumentation in answering the questions.






16

In finite difference methods the domain V is discretized with a grid of N nodal points
xs = (z7,yr) and the unknown function u(x) is replaced by a vector of nodal point values,

U = (u(x)), u(xa), - u(xn))” (3.5)

In the previous chapter we have seen how, for a 1-D problem, the PDE can be discretized us-
ing a central difference approximation for the second derivative. This approach is extended
for multi-dimensional problems in the next section.

3.2 A central difference method

We shall use a rectangular geometry of the domain V and we define an equidistant 2-D
grid of nodal points by,

xij = (T3, y5) = (To + i X by yo + 7 x h) (3.6)
problem 3.2. Derive the following difference approzimation of the 2-D Laplace operator,
V2u(x,-j) ~ D,zlu(xgj)
(u(zi + by y;) + ulzi = hyyy) — duzi, yy) + w(zi, y; + h) +ulzi, y; — b))

h2
(u(mi+l ’ yJ) + u(zi—l:yj) - 4"‘(5";1': yj) + 'M(I,‘, yj-!-l) + ’U.(IL‘,‘, yj—l))
o) (3.7)
Show that the local truncation error in the discretized Laplace operator defined as,
FE = D?,u(x,-j) S Vgu(x,-j) (3.8)

is of second order in the grid spacing h, i.e. E = O (h?).
Hint: expand the functions in the difference formula in o Taylor series in h in the neigh-
borhood of the grid point x;;. Do this separately for both = and y dependence.

The degrees of freedom of the discretized problem have been organized in an N vector
U € R¥ in (3.5) and the sequence of the vector components depends on the nodalpoint
numbering of the finite difference mesh, mapping the grid indices 7,7 (row, column) onto
the index I of the N-vector U. Assuming 7,4, rows and n.y columns in a rectangular grid,
a straightforward mapping is obtained by a column wise numbering of the nodal points

I= (jcol - 1)nrow + trow
Ur= u(xl) = u(mjmnyimw)r jcol =1,... s Theol s irow = ... frow (3,9)

In case of a boundary value problem with prescribed values of the unknown potential
on the complete boundary, a Dirichlet type boundary condition (3.2), the described dis-
cretization and nodal point numbering result in a system of linear algebraic equations for
the internal nodal point values of the potential function.

The bandwidth w of the matrix S is defined by the location of non-zero diagonals in
the upper and lower triangle matrix, excluding the main diagonal,

w=mazx|l - J|, Si;#0 (3.10)

According to this definition a diagonal matrix has a zero bandwidth and tri-diagonal matrix
has a bandwidth of one. From this we find that the smallest bandwidth is obtained by
defining the grid columns in the direction of the smallest dimension of the rectangular
domain. Efficient algorithms are available for the solution of systems of linear algebraic
equations that are based on a so called bandmatrix structure where only matrix elements
within the bandwidth defined in (3.10) are stored in computer memory. Minimizing the
bandwith of the matrix will result in minimizing the computer requirements (memory,
compute time} when using such bandmatrix solvers.
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problem 3.3. Show that the operator D? applied to the nodal point values of e uniform
grid produces a system of linear algebraic equations for a discrete approzimation of (3.1).
_Consider the special case of a rectangular grid with two rows of internal gridpoints and
apply a (grid) columnwise numbering of the degrees of freedom of the problem as in (3.9).
What is the structure of the matriz S of the resulting system?

3.3 A difference formula for variable grid spacing and vari-
able coefficient

The difference formula for the Laplace operator (3.7) is derived for the special case of a
uniform coefficient c(x). Besides this the grid used in section 3.2 is equidistant. Here we
introduce the more general case with variable coefficient and apply a so called structured
grid, defined by the product of two 1-D grids with variable nodal point spacing in both
coordinate directions. This allows local mesh refinement. We consider a 2-D rectangular
domain subdivided in rectangular grid cells spanned by the nodalpoints, illustrated in Fig.
3.1. Similar as in 2.2, but now for & 2-D problem, we integrate the PDE (3.1) over a small
area, a finite volume, surrounding & single gridpoint Fo, illustrated in Fig. 3.1.
Relative coordinates of neighboring gridpoints of Fy arc parameterized as follows,

PO — (0:0)
Pl = (S]h,O)
Py, = (0,s2h)
P = (_SSh&i})
P, = (0,-s4h), O<sk<l, K=1,..,4 (3.11)
P,
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Figure 3.1: Left: rectangular computational domain showing local mesh refine-
ment and a single (dashed) finite volume. Right: zoown-in finile volume with
five grid points in @ mesh with variable grid point spacing. My, K =1,...,4
are midpoints positioned halfway two neighboring gridpoints Py, Px. A difference
cquation is derived by integration over the rectangle spanncd by the corner poinis
Ch,...,Cy.

The PDE (3.1) is integrated over the rectangular area V spanned by the corner points
Ci,...,Cy in Fig.3.1, that are the centre points of the neighboring grid cells.

I= fi V() dV = fd | ex)h mi dd = - /v F)V (3.12)
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5.2 Structure of the coefficient matrices

From the definition (5.9) and (5.10) of the coefficient matrices of (5.6) we can immediately
deduce the symmetry property,

Mypy= My, 810=8n (5.14)

If we choose for the basis functions the piecewise linear (hat) functions as displayed in Fig.
5.1, these matrices are also tri-diagonal i.e. there bandwidth is one.
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Figure 5.1: Piecewise linear basis functions N; (dashed) and Ny, (dotted) on
a 1-D grid. The support of basis function Nj isej_1Uey.

For multi-dimensional problems (2-D,3-D} we find in a similar way that the finite ele-
ment matrices are sparse, i.e. most of the matrix elements are zero. This follows directly
from the expression for the matrix coefficients. For the heatcapacity matrix M, also de-
noted as the mass matrix in the literature, we have for example,

My = f NN dz (5.15)
v

It follows that the matrix element is zero if S(N;}NS(N;) = 0, where S(N;) is the support
of the basis function Ny. The basis function is defined as a piecewise Lagrange interpolating
polynomial on the elements that contain nodal x;, and zero elsewhere. This means that
Ny differs from zero only in the direct neighborhood of nodal point x; and most of all the
possible productfunctions N;N; are zero, resulting in a corresponding zero matrix element
My;. From (5.10) it follows that the stiffness matrix S has the same sparsity structure
as the mass matrix M. This situation resembles the finite difference methods introduced
carlier, where only combinations of neighboring nodal points, connected by a ‘difference
molecule’ resulted in non-zero matrix contributions.

problem 5.3. Show from the above that both matrices 8 and M are tri-diagonal for 1-D
problems.

5.3 Computation of the matrix elements

The integrals defining the matrix and right hand side vector elements can be split in a sum
of contributions from the individual finite elements ey, in this 1-D case e; = [z, zy41]. In
this context the complete matrices in (5.9), (5.10) are known as global matrices and the
contribution from a single element is known as an element matrix. In finite element compu-
tations the global matrices are coinputed in an ‘assembly procedure’ where the coefficients
of the element matrices are added to the corresponding coefficients of the global matrix in



a loop over elements. The righthand side vector R is assembled in a similar way in a loop
over elements. In section 5.4 the implementation of the assembly proces will be treated in
more detail.

5.3.1 The mass matrix M

‘The mass (or heat capacity matrix) appears in the ‘inertial’ term of the differential equations
of the finite element solution (5.7). The matrix is defined as the sum contribution of the
N —1 elements,

Smax N=1 ZTE+1 N-=1 K
Mjy, =f NNy dz = Z f NiN;dz= Z .M'_SL) (5.16)
0 K=1v3K K=1
The mass matrix for element ex = [2k, 2k 41] is defined as,
ZK 1
M = _/ " NLNy dz (5.17)
ZK

For the piecewise linear basis functions considered here we see from Fig.5.1 that only the fol-
lowing four coefficients of the element matrix are non-zero, My i, M i1, M1k, Mi15c+1.
Using the local numbering of the nodal points and basis functions on ex and & = 20 — 21
we obtain,

Z z e 2 1 h
M11=/2N1N1dz=f2(1—z z‘) dz=/ (1-¢)?hdl == (5.18)
£ 71 h 0 3
z2 2 — =
M12=/ NNy dz = f (l—z hzl) (z zl) dz
1 2 h.
1 h
= [a-0cmic=¢ (5.19)
0 6
Since M, = Mys and My = M5, we find for the element matrix,
h 21
(K) — K
M _6(12) (5.20)

problem 5.4. Derive for row number J of the global mass matriz,

hicy p=g-1

My = '“++q”-, L=J (5.21)
be L=Jg+1

A test for a software implementation of the element mass matrix can be devised from
the following:
An innerproduct of two real valued functions f and g on the interval [0, zynoz} is defined by,

(f-9)= j{; " fg dz (5.22)

Expansion in basis functions gives
(fhgh) = /0 < {Z FiNi(2)S_G JNJ(Z)} dz=Y_Y My FiG; = (MG - F)(5.23)
I J ]

It follows that the innerproduct (5.22) is exactly represented by (5.23) for piecewise linear
functions (including uniform functions), by using expression (5.20).
From (5.23) it follows that the mass matrix is positif definite,

(MX-X)>0, X#0 (5.24)
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The lumped mass matrix

In applications the sparse mass matrix is often replaced by an approximating diagonal
matrix the so called ‘lumped’ mass matrix, M*. For the general case in more dimensions
we have,

My = f NiNy dV = f B(x) dV (5.25)
v v

When the basis functions Nk are piecewise Lagrange polynomials of degree p, the integrand
®(x) is a piecewise polynomial of degree 2p. This latter polynomial can be approximated
in the usual way by interpolation,

My = f@dv
Vv

= M= -/‘;;‘I)KNK(X) dVv = ;N;(xK)NJ(xK)/‘;NK(x) dVv
- ;5,,(5_,,( fv Ni(x) dV = & fv Ni(x) dV (5.26)

problem 5.5. Derive the following ezpression for the lumped version of the element mass
matriz from the mass matriz in (5.20).
Solution:

wx) _h
M = 501 (5.27)

Verify that the sum of the matriz elements in a row (row sum) is conserved in this matriz
lumping procedure.
Hint: make use of the property of the basis functions,

Y Ni(x)=1 (5.28)
L
Derive for the global lumped mass matriz,
—1+h
M}, = (%) 81 (5.29)

5.3.2 The stiffness matrix S

The stifness matrix which appears in the diffusion term in the matrix equation (5.7) is
defined as,

maz  ONp ONy
S]L = /{; h‘.w Dz dz (530)
The derivatives have the same support as the basis functions,
1

Wy 2Eer
aN, hi-
E£ ={ -1, zeeq (5.31)

0, z3derUery

We further assume here that the diffusion coefficient is piecewise constant. The element
matrix becomes,

ARy _ i+t gNy ONy .
b]L = KL -/‘;H —é‘)z "“"—Bz d& (5-32)



and substituting (5.31) we get for the diagonal terms,

- w4t N 2 __ KK = E e

S = kg ./.:.;\- ( 52 ) dz = E\T’ S29 = 811 (5.33)
For the off-diagonal terms we get,
2kk N, 0Ny KK

= — e — d f— —--—’ S- — S 5-34

S12 =Kk /z . 0z bz z he o =5u (5.34)
w g 1 -1

S o ( == ) (5.35)

5.3.3 The righthand side vector R

Here we consider the contribution to the righthand side vector from the righthand side
function f of the partial differential equation (5.1) defined as,

0f= .[u T fNp de (5.36)

Corresponding contributions from boundary conditions are defined in (5.7). For a given
function f the integral in {5.36) can be evaluated numerically. In a alternative procedure
f(2) is expanded in the same basis functions as the solution T'(z),

Qr ~ fn z’"“zJjFJNJ(z)N;(z) dz =¥ jﬂ ™ NJ(z)Ni(2) dzF;
= Y MyFy, Fj=f(2) (6.37)
J

where M is the mass matrix. This way the righthand side vector is computed by means
of a matrix-vector multiplication of the mass matrix and the nodal point vector of the
righthanside function of the PDE (5.1). In software implementations the righthandside
vector is assembled element-wise by summing element vectors Q¥ in a program loop over
elements ex,

Qr=3QF, QF =3 M[SFf, Q=MF (5.38)
K J

Q{( _hg {21 FIK
QF /~ 6 \ 1 2 Ff

problem 5.6. How can the vector Q be defined for righthand side function f(z) = cd(z —
z,), corresponding to a pointsource concentrated in the sourcepoint z,. Where c is a constant
and & is the Dirac delta function. Show that the number of non-zero vector elements of the
right-hand side vector for this case is two.

(5.39)

5.4 Implementation of the assembly proces

The matrix and right hand side vectors of the discretized equations are computed by
summing element contributions. This procediire is known as matrix and vector assembly
respectively. As an example of the general procedure we describe here an implemncentation
for a 1-D problem that can be generalized for multi-dimensional problems. A so called
location matrix for the discretized domain is used in the implementation. This is an M x 2
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matrix, M the number of elements in the 1-D grid. For each element, the corresponding row
of the location matrix contains the global sequence numbers of the two degrees of freedom
corresponding to the element. In the assembly proces these sequence numbers are used as
pointers to the global matrix coeflicients where the coefficients of the element matrix are
added. Fig. 5.2 shows a structure diagram of an algorithm for the computation of the
location matrix in a program array kelem.

The location matrix is used in the assembly process. An algorithm for the assembly of the
stiffness matrix and righthand side vector is described in the structure diagram of Fig. 5.3.
In this scheme the 2 x 2 element matrices are computed in an element routine elem which
contains an implementation of the expression (5.35). The actual summation of the element
matrix coefficient to the global matrix coefficients is performed in a procedure addmat. In
this procedure the special (band) structure of the sparse global matrix can be exploited to
obtain effcient memory storage of the matrix array. The element righthand side vector is
computed in a routine elrhs which contains an implementation of (5.39).

problem 5.7. Verify that the assembly proces for the element matrices (5.85) results in
the same matriz as oblained with the finite volume method in section Chapter 2. Hint:
compare a single matriz row for both cases.
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nelem number of elements

kelem(l:nelem,1:2) = location matrix

becl, ben type boundary conditions in nodalpoints 1 resp. u
{1-essential | 2 natural)

|
| # initialise

| kelem = O

| ndof = 0; ielem = 1
|
| T bcl = 1 F

| » eass. bound. cond. | * nat. bound.cond.

| kelem{ielem,i) = ndof | kelem(ielem,1)} = ndof + 1
| kelem{ielem,2) = ndof + 1 | kelem(ielem,2) = ndof + 2
| ndof = ndof + 1 | ndof = ndof + 2

|
| do ielem = 2 , nelem-1

[ -
| | kelem{ielem,1) = ndof

| | kelem(ielem,2) = ndof + 1

| | ndof = ndof + 1

I==1

| ielem = nelem
|

|

I-

|

T ben = 1 F

* ass. bound. cond.
| kelem(ielem,1) = ndof
| kelem(ielen,2) = O kelem(ielem,2) = ndof + 1
I ndof = ndof + i

*= nat. bound. cond.
kelem{ielem,l) = ndof

— e e e A e S S e S —  E w

Figure 5.2: Structure diagram of an elgorithm for filling the location matrix in
an array kelem. Note the differcnt treatment of essential and naturel boundary
conditions.
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nelem - number of elements
coord - nodalpoint coordinates
kelem -~ location matrix
glomat - global matrix
glovec - global right hand side vector
elmat = @lement matrix
elvec - element vector
do ielem = 1, nelem

+ glemant ma

» glement ve

trix

ctor

idof1 = kelem(ielem,1)
idof2 = kelem(ielem,2)

call elem{ielem,coord,elmat)

call elrhs{ielem,coord,elvec)

T

idefi > 0

F

= r.h.s. vac

tor

» diagonal element glob. matr.
call addemat{idof1,idof1,elmat{l,1},glomat) |

glovec(idofi)=glovec{idofi}+elvac(1)

| = essent. bound.cond

T

idot2 > O

F

* diagonaal element glob. matr.
call addmat(idof2,idof2,elmat(2,2),glomat)|
» r.h.s. vector
glovec(idof2)=glovec(idof2)+elvec(2)

| » essent. bound.cond

* glement outside main diagonal

T

idofisidef2 1= Q0 F

— . e o ——— — . . ——————— — — — &

* outaide main diagaonal
* {ill uppertriangle (symmetry)
idofmnn = min(idofi,idof2)
idofax = max{idofl,idof2)
call addmat(idofmn,idofmx,elmat{1,2),glomat) |

| * compute r.h.s.

| contrib.
| bound.cond.

|
|
|
|
l
|
|
|
]
|
|
|
.1
|
|
|
I
|
I
-1
|
|
i
|
|
|
|
|
|
!
|
|
]
|

Figure 5.3: Structure diagram of an algorithm for matriz/vector assembly using

the location matriz in an array kelem.

5.5 Solving equations with a tri-diagonal matrix
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The solution of 1-D partial differential equations using discretization methods like the finite
difference method or the finite elment method often requires the solution of linear algebraic
equations with a tri-diagonal matrix. A simple recursion algorithm can be used to compute
such solutions. To derive the algorithm the matrix is written as,

( h o
az b
0 a3
0 o0
0 0
\ 0 0

0
co
b3
0
0
0

“ma

+

.

0
0
0

b2

aN-1
0

0
0
0

CN-2
byn—1
ay

0

0

0

0
CN-
by

)

)

(’ul\

Uy
i3

Uy-2
UN-1

Uy

dy
( 0 \
ds

dy-2
dy_y

\ dy /

(5.40)

We apply Gauss elimination on this system of equations. Eliminate the unknown w;_, from
equation number ¢ using equation number i — 1, working downward and starting in the first
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column of row number two. Arriving in row number i we have,
Qi-1Uio1 + Cio Ui = Si—] (5.41)
aitti—) + biui + ciugpr = d; (5.42)

where ay = b1, 31 = d;. Elimination of u;_; gives,

@iCi1 aisi—1
(bi = a; = 1) ui + ity = di — -j'_:—l (5.43)
o= b=l . = g =80 9 3 (5.44)
Q- oy

The Gauss elimination process results in a matrix A with two non-zero coefficients per
matrix row, the diagional coefficient, A;; = o; and A; 41 = ¢;. After the Gauss elimination
the solution vector is obtained from the matrix A by back substitution, applying cy = 0,

uy = N (5.45)
an
1 .

Ui=E(3i—Ciui+1)y3=N—1sN—2, == | (5.46)
1

This can be summarized in the following two-stage procedure. For given vectors a, b, ¢, d:
e compute the vectors a;, s, i =1,2,... N

o compute the solution vector U recursevely, u;, i=N, N-1, ..., L
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5.6 Implementation of boundary conditions

5.6.1 Natural boundary conditions

Here 0T /0z is given in one of the boundary points z = 0,2 = z;q;. This boundary
condition can be substituted directly into (5.7). In case natural boundary conditions are
given for both boundary points, we get a system of N equations in N unknowns, where N
is the number of nodal points of the 1-D mesh.

The special case of a steady state problem with 8T'/8¢ = 0 must be considered sepa-
rately here. We have seen in Chapter 3 that the potential problem with natural boundary
condition on the whole boundary requires a compatibility condition for the boundary con-
dition and that the solution, is non-unique (problem 3.13). This can be verified to hold
also for the 1-D finite element case treated here, where the fem equations are (5.7),

ar or
S STy = Qi+ ("E)zm Siw — ("E)o e I=1,2,...,N (5.47)

As an example consider the special case with a single linear element,

_K 1 =1 T _{ @ —q
=i 3)(2)-(8)-(3)

where g; are the heatflow density values in the nodal points. The element stiffness matrix
is singular (det S= 0) and non-unique solutions exist only if a compatibility condition holds
for the right-hand side of the equation. This condition is found by summation of the two
equations.

0=+ Q2+@—q (5.49)
problem 5.8. Give a physical interpretation of the compatibility condition (5.49).

problem 5.9. Verify that homogeneous natural boundary conditions are implicitly ac-
counted for in the finite element method.

5.6.2 Essential boundary conditions

In case essential boundary conditions apply in both boundary points the (1-D) problem
has NV — 2 degrees of freedom, corresponding to N — 2 internal nodal points. The solution
can be written as,

N-1
T(zt) =~ ) T(t)NL(2) + Ti(t)Ny(z) + Tn(t)Np(2)
L=2
= T*(z,£) + Ty(t)Ny(2) + T (t)Nn(2) (5.50)

The function 7™ introduced in (5.50) is in a subspace Sy C S of functions with zero
boundary values. Where S is the function space spanned by the basis functions N, (z),J =
1,...N. Apply the Galerkin principle to Sy instead of S, i.e. let 1 =2,3,...,N — 1 in the
testfunctions. In that case the boundary term in the Galerkin-finite element equations is
zero. The terms in Ty and T in the equation (5.7) contain only known quantities,

i:w a1, is Ty=Q [=23,..., N-1 5.51)
2 1 2 wT;=Qr 1=23,..., {5.
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Therefore these terms contribute to the righthand side vector. This is illustrated in the
following example for a steady-state problem,

SU=Q (5.52)

or writing the matrix vector product,

N
S SuUs=Q1, I=2,..., N-1 (5.53)
J=1
N=1
Z SpyUy=Qr = 8nlUy = SinUn, I=2,..., N-1 (5.54)
J=2

for given values of U1, Uy. The matrix equation is reduced in size and the righthand side
vector modified to,

R=Q-U;8; — UnxSn (5.55)

where S; and Sy are the first and last column vectors of the stiffness matrix S

5.7 Steady state problems

An important special case of the equations described in the previous sections occurs if
the solution is independent of time. As an example we describe a case with homogeneous
essential boundary condition for z = 0, (T)o = 0. For the other boundary point we consider
two possibilities,

1. (1),,... = Tn (essential boundary condition) (5.56)
2. (k0T/02), .= ’ng = Qm (natural boundary condition) (5.57)
P

This problem corresponds to a steady state heatconduction problem for a laterally homo-
geneous layer with vertically varying thermal diffusivity &, prescribed temperature on the
surface z = 0 and for zpg either a prescribed temperaturc or a a prescribed heatflow.
The equations for both cases with explicit right hand side contributions of the boundary
conditions are,

N=1
1. 3" 81Ty = Fj = SinTm, 1=2,...,N -1 (5.58)
J=2
N
2. > S1Ty = Fr+ Qubin, 1=2,...,N (5.59)
J=2

where the righthand side vector F is defined as,
Fy = / T F2)NI(2) de (5.60)
0

and f(z) is the distribution of internal heating. For given £, T or @y this system can be
solved for the unknown temperature 1.
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5.8 Using higher order basis functions

In the previous sections we considered mainly application of linear basis functions, here we
shall compare solutions of some simple problems solved by applying various basis functions.

We consider the solution of the one-dimensional Poisson equation, —d?u/dz?2 = f on
the domain 0 < z < 1 with essential boundary conditions in the boundary poeints z = (0, 1).

A solution derived from linear basis functions

To investigate the finite element solution of the 1-D Poisson problem we apply a uniform 1-
D mesh consisting of a total of four equidistant nodal points spanning three finite elements
with corresponding linear basis functions. Each of the nodal points is associated with a
specific basis function with a unit value in the nodal point considered. A global stiffness
matrix for this problem can be constructed from the three 2 x 2 element matrices defined
in section 5.3.2 by the assembly process discussed in section 5.4.

problem 5.10. Derive the following global matriz by assembling the three element matrices,

1 -1 0 0
1[-1 2 -1 o0
S=%| 0 -1 2 -1 (5.61)
0 0 -1 1

where h = 1/3 is the length of the elements.

problem 5.11. As an application of (5.61) we consider first a case with f = 0 correspond-
ing to a 1-D Laplace equation. Define the essential boundary conditions as, u(0) = 0 and
w(l) = 1 and derive the following system of equations SU = R for the degrees of freedom
in the finite element solution corresponding to the internal nodal points,

1 2 a1\ (mY_1{t)_1(0
H(—l 2)(U§)ZH(U:):E(1) (5.62)

Solve these equations and compare the nodal point solution values with the analytical solu-
tion of the corresponding 1-D Laplace equation. Verify that in this case the finite element
solution and the analytical solution are identical.

Next we consider an extension of the above problem to a 1-D Poisson equation with a
uniform right hand side function f(z) = H, H > 0 a constant. We specify homogeneous
essential boundary conditions 1(0) = u(1) = 0. This represents the steady state tempera-
ture u in a heat conduction problem for a layer with uniform internal heat production rate
H and prescribed zero temperature at the top and bottom boundary.

problem 5.12. Derive the following analytical solution for this Poisson problem,
1
u(z) = §Hz(l - z) (5.63)
The Poisson problem can be solved numerically on the same four-point finite element
mesh as before,

problem 5.13. Verify that the following finite eclement equations hold for the Poisson
problem on the four-point mesh.

(3 1)(8)-(2)-()

Derive the numerical solution, Uy = Us = h*H and compare this result with the analytical
solution.
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