Examination: Computational Geophysics
June 27, 2014, 13:15-16:15

Problem 1

A model for Rayleigh-Benard (R-B) convection of an isoviscous fluid layer in the Boussinesg-
approzimation can be written in terms of a stream-function-vorticity formulation by the fol-
lowing coupled equations,

Viw = —Rad,T (1)
Vi =w (2)
%-{-u-VT:VzT (3)

We consider a 2-D rectangular domain V' = [0, L] x [0, 1] with free-slip impermeable boundary
conditions formulated as,

w(x) =0,9(x)=0,x € 9V (4)

The model equations are discretized using a finite element method on a grid with N, finite
elements spanned by N,, nodal points x;,J = 1,..., N,.

1. Boundary conditions for the temperature field T' in the R-B convection problem dif-
fer from the conditions (4) applied to the w, problem. Specify apropriate boundary
conditions for the temperature field 7" assuming symmetrical continuation of the finite
domain in the horizontal direction.

2. Discuss the different number of degrees of freedom of the discretized solution fields
Q; =w(xy), ¥; = ¥(x,) on the one hand and T; = T(x;) on the other, as a result of
the different boundary conditions for these fields.

3. In the following finite element equations are considered for the coupled system (1), (2},
(3). This item 3. concerns equation (1). Equations (2) and (3) are dealt with in items
4., 5., 6.

e First derive explicit expressions for the different A, F terms in the finite element
equation (5}, corresponding to the vorticity equation (1), using a Galerkin method.

AQ=F (5)

Note: Give a derivation of the algebraic equations, starting from the Galerkin prin-
ciple applied to (1), using general finite elements and corresponding basis functions
based on piece wise Lagrange interpolation per element.

e Show that the right-hand side vector F can be written as Fy = ¥, R;;Ty, I =
1,2,..., and express the matrix R;; interms of the finite element basis functions.
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o Discuss the structure of the matrix of the resulting system of equations. (Symmetry,
sparsity structure).

4. Derive a similar system of finite element equations for the stream function equation (2},
with the same matrix as in (5).

A¥ =G (6)

Explain why the matrices in (5) and (6) are identical and how the right hand side vector
G is defined in terms of the vorticity field w and finite element basis functions.

5. For the energy equation (3) we consider the special case of a steady state model, where
the time derivative is dropped in (3).

e Derive the corresponding finite element equation,
ST =R (7)

for the energy transport equation, using a Galerkin method applied to (3). Show in
your derivation how the advection term u- VT in (3) is included in the application
of the Galerkin method, to derive an expression for the stiffness matrix S.

e Also derive an expression for the right-hand side vector R for this model.

6. The velocity field u in (3) is expressed in the stream function as,

u= (az¢a ""'a:'lvb) = —(ay'l/), az¢) (8)

Assume that 2-D linear triangular elements are used for both the stream function and
the vorticity fields.

Derive the following expression for the contribution to the stiffness matrix in (7) from
the advective energy transport,

Shrl— E Uik—m—+U )d[' 9)
513 1/ ( 1 2K~

where Ui and Usg are the components of the flow velocity field, that are piece wise
constant per element (why?).

7. The discretized equations derived above can now be used to solve the steady state R-
B convection problem. Explain why these three systems of equations are coupled in
a non-linear way and discribe an iterative procedure for the solution of the coupled
equations.



Problem 2

Steady state elastic deformation problems can be formulated with the elastostatic equation,
8013 + pFy =0 (10)

We consider a 2-D plain strain configuration where the displacement is in the vertical plane,
u = (u,v,0). For a linear elastic medium the constitution equation relating the stress and
strain tensors can be written in the following matrix vector scheme,

o1 A+2u A 0 €11
(e D)) = A A+ 2[1, 0 €9 (11)
019 0 0 H €12

where the strain tensor is defined in terms of the displacement field as, €;; = 1/2 (9;u; + 9yu;).
We apply the above to model the elastic deformation of a column under its own weight.
We assume that the displacement on the vertical boundaries is constrained to the vertical
direction with a zero tangential stress condition (free slip). For the horizontal bottom and top
boundaries of the 2-D rectangular domain we define respectively, zero displacement (rigid)
and zero traction (free boundary). This can be formulated as a 1-D scalar problem with
u = (0,v,0).

1. Show that the elastostatic equation for this problem reduces to the following ordinary
differential equation for the vertical displacement v,

d dv
4 ((,\ + 2,%) - (12)

where the gravity acceleration has been substituted for the body force field.

2. For the case with uniform elasticity coefficients A, 1 a polynomial solution of degree two
is derived in the lecture notes. For cases with variable elasticity coefficients numerical
models for the above problem can be obtained with a finite element method.

Derive expressions for the stiffness matrix S and right-hand side vector ¥ of the cor-
responding finite element equation SV = F, where V; = v(x,) is the finite element
solution vector. Assume general finite elements and corresponding basis functions N,
here.

3. Discuss the application of linear (2-node) elements for the equation of the last item.






