DIVA: Mid-term test 1a-2015

Write your name and write READABLE ! Each assignment is 1 point

1. Find the limit of the sequence $\lim _{n \rightarrow \infty} \frac{(n+1)^{2}}{\sqrt{3+5 n^{2}+6 n^{4}}}$
2. For the series $\sum_{n=1}^{\infty} e^{-n \ln 3}$ determine the sequences $a_{n}, S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$ and $R_{n}=S-S_{n}$ and their limits for $n \rightarrow \infty$
3. Determine if the following series converges: $\sum_{n=1}^{\infty} \frac{100^{n}}{n^{200}}$
4. Find the convergence interval for the series $\sum_{n=1}^{\infty}(-1)^{n} 2^{n}(\sin x)^{n}$
5. If the Taylor series for $\sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}$ find the Taylor series for $\frac{\sin \sqrt{x}}{\sqrt{x}}$
6. a. Write in the form $a+b i: \quad \frac{1}{z-i}$ if $z=2-3 i$
b. Determine the absolute value of $\left(\frac{1+i}{1-i}\right)^{5}$
7. Solve the complex equation for x and $\mathrm{y}: \frac{x+i y}{x-i y}=-i$
8. Test the complex series $\sum_{n=0}^{\infty}\left(\frac{1+i}{2-i}\right)^{n}$ for convergence
9. Find the convergence circle for the complex series $\sum_{n=1}^{\infty} \frac{(-1)^{n} z^{2 n}}{(2 n)!}$
10. a) Write in the form of $x+i y:\left(\frac{1-i}{\sqrt{2}}\right)^{40}$
b) Find the complex roots of $\sqrt[3]{-8 i}$
(1) 1.2 .2

$$
\begin{aligned}
\frac{(n+1)^{2}}{\sqrt{3+5 n^{2}+6 n^{4}}} \text { hoogste machten: } & \frac{n^{2}}{n^{2} \sqrt{6}} \\
\text { dus limiet } & =\frac{1}{\sqrt{6}}
\end{aligned}
$$

(2) 1.4 .4

$$
\begin{aligned}
& a_{n}=\left\{\frac{1}{3^{n}}\right\}_{n=1}^{\infty} \quad S_{n}=\frac{a\left(1-r^{n}\right)}{1-r} \\
&=\frac{\frac{1}{3}\left(1-\frac{1}{3^{n}}\right)}{1-\frac{1}{3}}=\frac{1}{2}\left(1-\frac{1}{3^{n}}\right) \\
& \lim a_{n}=0 \quad \lim S_{n}=\frac{1}{2}(1-0)=\frac{1}{2}=S \\
& R_{n}=15-S_{n}=\frac{1}{2}-\frac{1}{2}\left(1-\frac{1}{3^{n}}\right)=\frac{1}{2}-\frac{1}{2}+\frac{1}{2 \cdot 3^{n}} \\
& R=\lim R_{n}=\lim \frac{1}{2 \cdot 3^{n}}=0 \\
&\text { (3) } 1.6 .27] \sum_{0}^{\infty} \frac{100^{n}}{n^{200}} \\
& C_{n}=\left|\frac{100^{n+1}}{(n+1)^{200}} \cdot \frac{n^{200}}{100^{n}}\right| \rightarrow \text { e } \mid \text { limen } e_{n}=\left|100 \cdot \frac{n^{200}}{n^{200}}\right|=100
\end{aligned}
$$

hence divergent
(4) $\sum_{0}^{9}(-1)^{n} \cdot 2^{n} \cdot(\sin x)^{n}$

$$
\begin{aligned}
& 0=\lim \left|\frac{2^{n+1}}{2^{n}} \cdot \frac{(\sin x)^{n+1}}{(\sin x)^{n}}\right|=|2 \sin x|<1 \\
& \rightarrow|\sin x|<\frac{1}{2} \rightarrow n \pi-\frac{\pi}{6}<x<n \pi+\frac{\bar{n}}{6}
\end{aligned}
$$

Grenzen: $x=-\frac{\bar{x}}{6} \rightarrow \sin x=-\frac{1}{2}$

(5) 1.13 .11
$\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots$

$$
\begin{aligned}
\rightarrow \frac{\sin \sqrt{x}}{\sqrt{x}} & \left.=\left(V_{x}-\frac{(v x)^{3}}{3!}+\frac{(\sqrt{x})^{5}}{5!}-\frac{(\sqrt{x}}{7!}\right)^{7}\right) / \sqrt{x} \\
& =1-\frac{(\sqrt{x})^{2}}{3!}+\frac{(\sqrt{x} x)^{4}}{5!}-\frac{(\sqrt{x})^{6}}{7!} \\
& =1-\frac{x}{3!}+\frac{x^{2}}{5!}-\frac{x^{3}}{7!}+\cdots \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n} \cdot x^{n}}{(2 n+1)!}
\end{aligned}
$$

(6) 2.522 $\frac{1}{z-i}$ if $z=2-3 i$

$$
\rightarrow \frac{1}{z-\vec{i}}=\frac{1}{2-3 i-i}=\frac{1}{2-4 i} * \frac{2+4 i}{2+4 i}=\frac{2+4 i}{4+16}=\frac{1}{10}+\frac{2}{10} i
$$

(b) absolute value of $\left(\frac{1+i}{1-i}\right)^{5}=\left(\frac{\sqrt{2}}{\sqrt{2}}\right)^{5}=1^{5}=1$
(7)

$$
2.546 \quad \frac{x+i y}{x-i y}=-i \rightarrow x+i y=-i(x-i y)=-i x-y
$$

-OF: $\frac{x+i y}{x-i y}=-i \rightarrow \frac{x+i y}{x-i y} \cdot \frac{x+i y}{x+i y}=-i$

$$
\rightarrow \frac{x^{2}+2 i x y-y^{2}}{x^{2}+y^{2}}=-i \rightarrow x^{2}-y^{2}+2 i x y=-i\left(x^{2}+y^{2}\right)
$$

So: $x^{2}-y^{2}=0$ and. $2 x y=-\left(x^{2}+y^{2}\right)$

$$
\begin{array}{ll}
x^{2}=y^{2} . & x^{2}+2 x y+y^{2}=0 \\
x=y v x=-y & (x+y)^{2}=0 \\
\rightarrow & x=-y
\end{array}
$$

hence: $x=-y$
(d)

$$
\left.\begin{array}{l}
2.6 .13 \\
C=\lim \left\lvert\,\left(\frac{1+i}{2-i}\right)^{n}\right. \\
2-i
\end{array}\right)^{n+1} \cdot\left(\frac{2-i}{1+i}\right)^{n}\left|=\left|\frac{1+i}{2-i}\right|=\frac{\sqrt{2}}{\sqrt{5}}<1,\right.
$$

hence convergent.
(9) 2.7.7 $\sum \frac{(-1)^{n} z^{2 n}}{(2 n)!}$

$$
\begin{aligned}
0=\lim e_{n} & =\lim \left|\frac{z^{2(n+1)}}{(2(n+1))!} \cdot \frac{(2 n)!}{z^{2 n}}\right| \\
& =\lim \left|\frac{z^{2}}{(2 n+2)(2 n+1)}\right|=0 \Rightarrow \text { for all } z
\end{aligned}
$$

(16) $2 \cdot g \cdot 21$ a) $\left(\frac{1-i}{\sqrt{2}}\right)^{40}$

Hence: $r=\sqrt{\left(\frac{1}{\sqrt{2}}\right)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}}=1$

$$
\begin{gathered}
v=-\frac{1}{4} \pi \\
\rightarrow\left(\frac{1-i}{\sqrt{2}}\right)^{40}=\left(e^{-\frac{1}{4} i}\right)^{40}=e^{-10 \pi i}=1
\end{gathered}
$$

2.10 .20 (b)

$$
z=\sqrt[3]{-8 i}=\sqrt[3]{2^{3}-i}
$$

$$
\text { Since }-i=e^{\frac{3}{2} \pi i} \rightarrow \quad z=2 e^{\frac{1}{3}\left(\frac{3}{2} \pi+2 n \pi\right) i}
$$

$$
\begin{array}{ll}
n=0 & z_{1}=2 e^{\frac{1}{2} \pi i}=2 i \\
n=1 \quad z_{2}=2 e^{\left(\frac{1}{2} \pi+\frac{2}{3} \pi\right) i} \\
n=2 \quad z_{3}=2 e^{\left(\frac{1}{2} \pi+\frac{4}{3} \pi\right) i} \quad \frac{\sqrt{3}}{}-i \\
n=+\sqrt{3}-i
\end{array}
$$

