Tentamen - 15 Apr 2009 ## Jeannot Trampert The numbers in () indicate the percentage for evaluation. No documents are allowed during the examination. Please write clearly and feel free to write your answers in Dutch. - 1. (30) Plot the wavelet $a_t = (0, 1, 2, 1, 0)$. Now consider the wavelet $b_t = (1, -1)$. Convolve $a_t * b_t$ and show that b_t is a finite difference operator. We now want to integrate a_t . We therefore construct the inverse wavelet of b_t . Do this using the Z-transform of b_t . Give the infinite expression of b_t . Convolve a_t with the inverse of b_t of length 2, 3, 4 etc. Can you find a better way of doing this? - 2. (20) A low-pass Butterworth filter filter has the amplitude response $$|A(\omega)|^2 = \frac{1}{1 + (\omega/\omega_c)^n} \tag{1}$$ For $\omega_c = 2\pi$ find the amplitude at different ω for different n. How does the value of n affect the frequency content of the output above and below the cut-off frequency ω_c . 3. (50) We want to solve the system $$x + y + z = 3 \tag{2}$$ $$x + y = 1 \tag{3}$$ Evaluate the unknowns with a damped least-squares solution $$m = (G^t G + \theta I)^{-1} G^t d = G^t (GG^T + \theta I)^{-1} d$$ (4) Solve the system for various values of $\theta = 1$, 0.1, 0.01. Explain what happens to the solution by looking at the resolution operator. Now solve the system using a singular value decomposition. For which θ are the solution from SVD and DLS equal? Why? Good luck.