FINAL EXAM GEO2-1202 Physical Chemistry Thursday 8 November 2012 11 – 13

General remarks:

- This exam contains *five* questions.
- Please answer concisely, but present intermediate calculations.
- Report the units of the numbers, particularly for your final answer
- Answers in English or in Dutch are allowed.
- At the end of the examination hand in all your answer sheets.
- Write down your name or student number on all answer sheets.

1. The synthesis of HCl(g) has following stoichiometry: $H_2(g) + Cl_2(g) \leftrightarrow 2HCl(g)$

	H ₂ (g)	Cl ₂ (g)	HCI
$\Delta_f \overline{H}^0$ [kJ mol $^{-1}$]	0	0	-92.3
$\Delta_f ar{G}^0$ [kJ mol $^{ extstyle -1}$]	0	0	-95.3

- (a) Calculate the equilibrium constant K_p for the synthesis of HCl at 298 K.
- (b) Calculate the equilibrium constant K_{ρ} for the synthesis of HCl at 450 K.
- (c) Discuss qualitatively the effect of pressure on the yield of the reaction (how much HCl can be produced from H_2 and Cl_2 when equilibrium is reached).
- (d) Discuss qualitatively the effect of adding a catalyst on the yield of the reaction.
- (e) In a reaction vessel of 50 L, 2 moles of \mathbb{N}_2 and 2 moles of \mathbb{N}_2 are added. Calculate the number of moles of HCl in equilibrium at 450K.

2.

(a) Calculate the equivalent conductance of acetic acid (CH₃COOH) at infinite dilution from the information given in the table 8.2 (see next page).

The equivalent conductance was measured at various concentrations of CH₃COOH:

Concentration (mol L ⁻¹)	Equivalent Conductance (Ω ⁻¹ equiv ⁻¹ cm ²)
0.010	21.36
0.020	15.23
0.030	12.48
0.040	10.83
0.050	9.70
0.060	8.87

(b) Calculate the dissociation constant K_a of acetic acid.

Table 8.2
Equivalent Ionic Conductance and Ionic Mobility of Some Common ions at 298 K

	λ_0^{ij}	Ionic Mobility ^b	
lon	$\Omega^{-1} \cdot \text{equiv}^{-1} \cdot \text{cm}^2$	10 ⁻⁴ cm ² · s ⁻¹ · V ⁻¹	Ionic Radius/Å
H	349.81	36.3	
The state of the s	38.68	4.01	0.60
Na	50.10	5.19	0.95
K ⁺	73.50	7.62	1.33
Rb ⁺	77.81	7.92	1.48
Cs	77.26	7.96	1.69
NH1	73.5	7.62	
Mg ²⁺	53.05	5.50	0.65
Ca^{2+}	59.50	6.17	0.99
Ba ²⁺	63.63	6.59	1.35
Cu ²³	53.6	5.56	0.72
OH-	198.3	20.50	
F-	55.4	5.74	1.36
CI	76.35	7.91	1.81
Br ⁻	78.14	8.10	1.95
No.	76.88	7.95	2.16
NO;	71.46	7.41	
HCO_3	44.50	4.61	
CH ₃ COO-	40.90	4.24	
SO ₄	80.02	8.29	

[&]quot;From Robinson R. A.; Stokes, R. H. *Electrolyte Solutions*, Academic Press, New York, 1959. Used by permission. Note that for ions carrying multiple charges, the molar conductance is given by the product of the magnitude of the charge and the equivalent ionic conductance. Thus, the molar ionic conductance of Mg^{2+} is 2×53.05 or $106.1~\Omega^{-1}$ mol 1 cm².

3.

(a) Calculate the solubility product for silver(I) chloride (AgCI) given the standard reduction potentials of the half reactions:

$$Ag^+ + e^- \rightarrow Ag(s)$$
 $E_0 = 0.800 \text{ V}$
 $AgCl(s) + e^- \rightarrow Ag(s) + Cl^- E_0 = 0.222 \text{ V}$

(b) Calculate [Ag⁺] in a 0.015 M MgCl₂ solution. Assume that the Debeye-Hückel limiting law is appropriate to calculate the activity coefficients.

^b From Adamson, A. W. A Texthook of Physical Chemistry, Academic Press, New York, 1973. Used by permission.

4.

Consider a galvanic cell that uses the reaction:

Cu (s) +
$$2Fe^{3+}(aq) \rightarrow Cu^{2+}(aq) + 2Fe^{2+}(aq)$$

with $[Fe^{3+}] = 1.0 \times 10^{-4} \text{ M}$, $[Cu^{2+}] = 0.25 \text{ M}$, and $[Fe^{2+}] = 0.20 \text{ M}$

(a) Calculate the emf of this cell at 25 °C.

The solutions of the half cells are diluted by a factor of two.

(b) Calculate the emf of this cell at 25 °C.

5.

The progress of a reaction with a single reactant in the aqueous phase was monitored by measuring the concentrations at various times:

Time (s)	Concentration (mol L ⁻¹)
0	2.0
10	1.3
20	0 .9633

- (a) Determine the reaction order.
- (b) Calculate the rate constant.
- (c) Calculate the concentration of the reactant at two half-lives.

Values of Some Fundamental Constants

Constant	Value
Avogadro's constant (N_A)	$6.0221367 \times 10^{23} \text{ mol}^{-1}$
Bohr radius (a_0)	$5.29177249 \times 10^{-11} \text{ m}$
Boltzmann constant (k_B)	$1.380658 \times 10^{-23} \text{ J K}^{-1}$
Electron charge (e)	$1.602177 \times 10^{-19} \text{ C}$
Electron mass (m_e)	$9.1093897 \times 10^{-31} \text{ kg}$
Faraday constant (F)	96485.309 C mol ⁻¹
Gas constant (R)	8.314510 J K ⁻¹ mol ⁻¹
Neutron mass (m_N)	$1.674928 \times 10^{-27} \text{ kg}$
Permittivity of vacuum (ε_0)	$8.845 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$
Planck constant (h)	$6.626075 \times 10^{-34} \text{ J s}$
Proton mass (m_P)	$1.672623 \times 10^{-27} \text{ kg}$
Rydberg constant (R _H)	109737.31534 cm ⁻¹
Speed of light in vacuum (c)	299792458 m s ⁻¹

Useful Conversion Factors

 $\begin{array}{l} 1~\dot{A}=10^{-8}~cm=10^{-10}~m=0.1~nm\\ 1~atm=760~torr=1.01325\times10^5~Pa=101.325~kPa\\ 1~bar=1\times10^5~Pa=100~kPa=0.986923~atm\\ 1~cal=4.184~J\\ 1~eV=1.602\times10^{-19}~J=96.4853~kJ~mol^{-1}\\ 1~R=8.314~J~K^{-1}~mol^{-1}=0.08206~L~atm~K^{-1}~mol^{-1}\\ 1~L~atm=101.34~J \end{array}$

Key Equations

	A CONTRACTOR OF THE PROPERTY O	racional and an include a second second
G = H + TS	(Definition of Gibbs energy)	(6.3)
$dG_{po} \leq 0$	(At constant T and P)	(6.2)
$\Delta G = \Delta H - T \Delta S$	(At constant T and P)	(6.3)
$A \sim C + TS$	(Definition of Helmholtz energy)	(6.4)
$dA_{\gamma\gamma} \leq 0$	(At constant T and V)	(6.5)
$\Delta A = \Delta U + T \Delta S$	(At constant T and V)	(6,6)
Ad - Wes	(Relating AA to maximum work)	(6.8)
dU = TdS + PdV	(Combining first and second laws of thermodynamics)	(6.9)
dG = VdP + SdT	(Dependence of C on T and P)	(6,10)
$\Delta G \sim w_{cl,max}$	(Relating ΔG to dectrical work)	(6.11)
$A_{\ell}G^{\prime} = \Sigma_{\ell}A_{\ell}\overline{G}^{\prime}(\text{products}) + \Sigma_{\ell}\Delta_{\ell}\overline{G}^{\prime}(\text{reactants})$	(Standard Gibbs energy change of a reaction)	(6.12)
$\left[\frac{\partial\left(\frac{\Delta G}{T}\right)}{\partial T}\right]_{P} = \frac{\Delta H}{T^{2}}$	(Gibbs Helmholtz equation)	(6.15)
$\Delta G \sim nRT \ln \frac{P_2}{P_1}$	(Change in G due to change in P)	(6.17)
$\vec{G} = \vec{G}' + RT \ln \frac{P}{1 \text{ bar}}$	(Molar Gibbs energy of a gas)	(6) to 8
$rac{dP}{dT} = rac{\Delta \hat{H}}{T\Delta \hat{V}}$	(Clapsyron equation)	(6,19)
$\ln \frac{P_2}{P_1} = \frac{\Delta \tilde{H}}{R} \cdot \frac{(T_2 - T_1)}{T_1 T_2}$	(Clausius Clapeyron equation)	(6.21)
$\ln P = -\frac{\Delta \tilde{H}}{RT} + \text{constant}$	(Clausius Chapeyron equation)	(6.22)
12cmp+2	(The phase rule)	(6.23)
$f = \left(\frac{\partial U}{\partial f}\right)_{T} = T\left(\frac{\partial S}{\partial f}\right)_{T}$	(Restoring force of a stretched rubber band)	(0.27)

Key Equations

$\Delta_r \ell_\ell = -RT \ln K_F$	(Relation between $\Lambda_r G^r$ and K_r)	(%.7)
$\Lambda_i(G) = \Delta_i G \to RT \ln Q$	(Chbbs energy change of a reaction)	(9.9)
$eta = rac{f}{\hat{m{p}}}$	(Fugacity coefficient)	(4, 200
$\ln \frac{K_2}{K_1} = \frac{\Delta_t H}{R} \cdot \left(\frac{I_2}{T_1} \frac{T_1}{T_2} \right)$	(van't Hoff equation)	9. Marie 18. Mar
$\operatorname{im} K \simeq \frac{\Delta_t H}{RT} + \frac{\Delta_t S}{R}$	(van't Hoff equation)	(9.19)

Key Equations

No. 1000 cm ¹ L ¹ W	(Molar or equivalent conductance)	(84)
No. Ai + Ai	(Kohhausch's law of independent migration)	(8.6)
A KAN An	(Ostwald dilution law)	(8.9)
F 485°4C) Amort	(Coulomb's law)	The second of th
m (m' m' th'	(Mean fonce molality)	(8.17)
is a feet at the	(Mean tonic activity)	(8.20)
	(Definition of (1))	(8.21)
	(Mean ionic activity coefficient)	(8.22)
$I = \frac{1}{2} \sum_{i} n_{i} c_{i}^{2}$	(Ionic strength)	(8.25)
log : -0 500 : = 1 V/	(Debye Huckel limiting law)	(8.26)
log 5 - 0.509 2.5 VI	(Salting-in effect)	(N 28)
log S KI	(Salting-out effect)	(8.29)

Key Equations

E Employ Employ	(Standard cint' of a cell)	(10.1)
$A_iG = vFE$	(Relating A, G to the emf of a cell)	(10.2)
E XF	(Relating A.G. to the standard emf of a cell)	[10,4]
$E = \frac{RF \ln K}{vF}$	(Relating E to the equilibrium constant)	\$ 5 m
$ E-E = \frac{RT}{vF} \ln \frac{a_k^2 a_D^2}{a_k^2 a_B^2}$	(The Nernst equation)	(10.7)
$E = E = \frac{0.0757 \text{ V}}{v} \ln \frac{a_C^2 a_D^2}{a_A^2 a_B^2} = \frac{1}{2}$	(The Nerust equation at 298 K)	(40,8)
$\Delta_i S = v F \begin{pmatrix} \delta E \\ \delta T \end{pmatrix}_{p}$	(Relating $\Delta_t S$) to the temperature coefficient of E)	Street
$\Delta A H = - vFE^{-1} (vFT \left(\frac{\partial E}{\partial T}\right)_{\rho})$	(Standard enthalpy change of an electrochemical reaction)	(Section)

Key Equations

	TO A MATERIA CONTROL OF THE CONTROL	0.00000 00000 0000 000 000 0000 0000 0
Al Ab W	(Rate law for zero-order reaction)	(13.4)
$-\ln\frac{\Lambda_{i}^{2}}{ \Lambda_{in} } - kt$	(Rate law for first-order reaction)	(126)
M- Mark	(Rate law for first-order reaction)	(12.7)
$t_{\odot 2} = \frac{\ln 2}{\lambda}$	(Half-life of first-order reaction)	(8.0)
$ L_{i/2} \lesssim \frac{1}{ \mathbf{A}_{\mathbf{B}}^{(n)} ^4}$	(General expression for half-life)	(12.9)
$\frac{1}{[\Lambda]} \cdot \lambda_i + \frac{1}{[\Lambda]_{ij}}$	(Rate law for second-order reaction)	\$ 100 miles
h A. F. M	(Arrhemus equation)	(12.23)
$\ln k - \ln 1 - \frac{E_x}{RT}$	(Arrhenius equation)	(12.24)
$\ln \frac{k_2}{k_2} = -\frac{E_{\lambda}}{\hat{R}} \begin{pmatrix} 1 & 1 \\ I_2 & \hat{I}_2 \end{pmatrix}$	(Arthenius equation)	(12.25)
$\mu = \frac{m_{\Lambda}m_{\mathrm{H}}}{m_{\chi} + m_{\mathrm{H}}}$	(Reduced mass)	(12.28)
k of the tolki	(Modified Arrhenius equation)	(12.31)
$k = \frac{k_B T}{h} e^{\Lambda S^{-1} R} e^{-\Lambda H^{-1} / B T} (M^{1-m})$	(Thermodynamic formulation of reaction rate)	(12.36)
$\log \frac{k}{k_0} = z_{\lambda} z_{\rm B} B \sqrt{I}$	(Kinetic salt effect)	(12.44)
$k_{\rm D} = \frac{8 RT}{3 \eta}$	(Diffusion-controlled rate constant)	(12.45)
and the second of the case of the contract of	and place and a contract of the contract of th	