Master Physical Geography, Spatial Analysis and GIS 2 (geo4-4412) 2008 Final test

Date: Thu Nov 6, 2008, 13:00-16:00

Please show intermediate results, in addition to your answers

(16 points in total)

Question 1

- a. (1 point) Describe the typical variogram parameters; nugget, sill and correlation length.
- b. (1 point) What is the difference between conditional simulation and prediction? When would you use it?
- c. (2 points) There are two figures on the last page of this test. Figure 1 shows four different variograms (sample variograms and variogram models). Figure 2 shows four different random field, simulated with one of the variograms in figure 1. Tell which variogram belongs to which random field. Explain your answers.

Question 2 Given the following data set (x and y refer to spatial coordinates):

x	У	measurement	
0	0	0	
0	1	0.5	
0	2	1.0	
_0	3	1.5	

a. (1 point) Calculate the semivariance for lag (h) equal to 1, 2 and 3, given:

$$\gamma(h) = \frac{1}{2N_h} \sum_{i=1}^{N_h} (Z(s_i) - Z(s_i + h))^2$$

- b. (1 point) Why do we need to fit a variogram model to the sample variogram before using it in kriging or simulation?
- c. (1 point) If the measurement at location (0,3) was 4832 instead of 48, would you recommend using kriging? Explain why.
- d. (1 point) If we use kriging to predict a value at location (0,2), what would the kriging prediction and kriging variance be?
- e. (1 point) Calculate the covariance matrix between the observations (V) and the covariance vector between the prediction and the observations (v). The covariance function is equal to $C(h) = e^{-h}$.

f. (2 points) Calculate the simple kriging predictor and prediction variance for location (0,4), given the data set. You will need these formulas:

$$\hat{Z}(s_0) = \mu + v'V^{-1}(Z - \mu)$$
$$\sigma^2(s_0) = \sigma_0^2 - v'V^{-1}v$$

You do not need to invert V, use V^{-1} as given below. Instead of the v calculated in e, use the v that is given. Assume that μ equals the mean of the data. Use the same covariance function as in question e.

$$V^{-1} = \begin{bmatrix} 1.16 & -0.43 & 0.00 & 0.00 \\ -0.43 & 1.31 & -0.43 & 0.00 \\ 0.00 & -0.43 & 1.31 & -0.43 \\ 0.00 & 0.00 & -0.43 & 1.16 \end{bmatrix}, \ v = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0.5 \end{bmatrix}$$

Question 3 a. (2 points) Give a short description of each of the following methods.

- * Cokriging
- * Inverse distance weighted interpolation
- * Splines
- * Ordinary kriging
- * Universal kriging
- b. (1 point) Describe for which situations you would use universal kriging and which cases you would use cokriging.

c. (2 points) Below you can see a summary of the results of a leave-one-out cross-validation. Give a short description of cross-validation and the outcome. What can you say about the cross-validation below? Would you recommend the model that was used in this case? Explain your answer.

```
Object of class SpatialPointsDataFrame Coordinates:
```

min max x 178605 181390 y 329714 333611 Is projected: NA proj4string : [NA] Number of points: 155

Data attributes:

var1.pred	var1.var	observed	residual
Min. :3.31	Min. :0.0815	Min. :4.73	Min. :-2.4128
1st Qu.:5.15	1st Qu.:0.1504	1st Qu.:5.29	1st Qu.:-0.8614
Median :5.94	Median :0.1686	Median :5.79	Median :-0.0923
Mean :5.91	Mean :0.1758	Mean :5.89	Mean :-0.0194
3rd Qu.:6.67	3rd Qu.:0.1930	3rd Qu.:6.51	3rd Qu.: 0.7066
Max. :8.69	Max. :0.5656	Max. :7.52	Max. : 2.0853

zscore fold Min. :-6.8541 Min. : 1.0

Max. : 7.1019 Max. :155.0

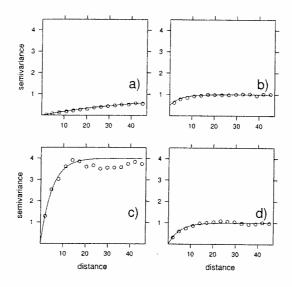


Figure 1: Variograms from simulations

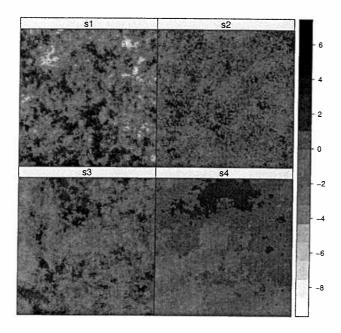


Figure 2: Simulated fields from the variograms in Figure 1 $\,$