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Midterm Examination ” Geodynamics” March 12, 2014
Solve the following problems from the provided copied pages of the syllabus:

* Problem 18 (page 17+18), problem 21 (page 19)
* Problem 26 (page 22+23), problem 28 (page 28)

Extra problem

1. Discuss the geotherm in the core-mantle boundary region schematically illustrated in
Fig.7 of the syllabus.

2. What are the implications of this particular geotherm for the dynamical state of the
Earth’s mantle.

3. Discuss the mineral phase transition from perovskite into the high-pressure form post-
perovskite and explain the importance of seismic observation of this phase boundary in
view of the previous items 1 and 2.
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gravity acceleration and integrating the pressure gradient dP/dr = ~pg. Assuming a zero pressure
value at the surface this results in,

R R r’ " ,
P(r) = f o(r' )g(r')dr' = 4G / p(r’){r—}z- fu ()" 2 }dr (44)

The pressure in the Earth’s interior reaches values over 350 GPa as shown in Fig. 1. For such high
pressire values the effect of self-compression on the density is significant. In the following this effect
is further explored.

The incompressibility &, or bulkmodulus 7 , is defined as,

1 1dp

_— S = m— 4

K pdP (45)
By substitution of dP = ~pg in (45) we derive an equation for the density profile,

1  —ldp dp pg

K= plgdr r =K (16)

2.6.2 Parameterization of the bulkmodulus

The radial density distribution for a selfcompressing planet can be obtained from (46} once the
bulkmodulus I is known. We will first consider simple cases where A is either a uniform constant
or it is parameterized in terms of the density.

problem: 18 Assume both K and g in (46) to be uniform in the mantle and derive the follouring density
profile,

£0
plz) = ———0p (17)
[-5F

where z = R~ r i3 the depth coondinate and Po = p(0) 18 the surface density value.

o Compute the depth z; where this expression becomes singular, i.e. p — oo, suggesting infinite compres-
ston of the matertal. To do this assume Earth(mantle)-like values of the incompressibility, K = 400GPa
(see Fig.3) and the surface density py = 3 - 103 kg/m3. 8

"An isotropic linear elastic salid can be described hy two independent elasticity parameters, for instance the Lamé
parameters A and . The bulkmoduius can be expressed in the Lamé paraneters as, K = A+ '-':;1. and] the bulkmodulus
A" and the shearmodulus g are the maost commonly used parameters to specify the elastic parameters of Earth materiuls,

*Hint: First order ordinary differential equations like {16) are of so called separable form,

ey

vt 3 (18
1 = Pe(s) [ 18)
[see for instance, E.L. Ince, Integration of ordinary differential tyuatzong, Oliver and Bayd, 1956) in which ease they
vnn he integrated in the following way,

ey iy [ .
—-=Q;r:rix-+f-—= z)lr + C — [ 19}
Py ~ 2@ Py =/ @)
In cases where the lefthand integral is & known function, say fiy), the solution is obtained by the inverse function,
o) = 1 ( [ oo + c) (50)
Fxample: dyjide = ~ye™= | >0,
/ d—i’j=f9"dz:+('—+l=—e"I+C—>y(J:) = — ! - {51}
i i C=pr

Fhe integration constant € can he expressed in an initial condition, € = | + 1/ 0],




14/02 18

o Now consider a simplified model of o lurge rocky ezoplanet of Earth-like composition unth M = &My
and R = 1.5Rg. Assume uniform grawnty (adapted for the given M, R) and uniform incompressibility
K. Do you now find the singular depth 2 within the depth range of the planet? Comment on the
assumption of a uniform gravity field in view of the models presented in section 2.5.

problem: 19 The result of problem 18 gives the density depth distribution for the model with constant
properties. The resulting expression (4 7) also contains the uniformn gravity acceleration. A more fundamental
relation belween density and pressure can be derived for this model with constant malerial property as an
equation of state (EOS) for the density.

Derive the following logarithmic EOS for the density in terms of the static pressure,

P=ln ((fg)K) (52)

The EOS (52) can be inverted to obtan an erplicit expression for density as a function of pressure,

9

P
p(P) = poexp ('IT) (53)

What happened to the singularity in (47) this derivation?

The singular behavior in the above density model is a resuit of the assumed uniform g and K
in (46). While g is rensonably constant with depth in the mantle, as illustrated in Fig. 1, K is
not. ‘The incompressibility increases with incrensing depth/pressure and as a resnlt the compression
remains finite for earth-like conditions. The incompressibility can be expressed in the density and
the seismic wave velocities, vy = V(A + Qu/p, ve = m With A = A + %,u this becotnes
K= p(ug — 4/3w?). A radial profile K(P(r)) can therefore be derived, from the seismic velocities
Jdetermined from inversion of traveltime tables of longitudinal and shearwave seismic arrivals.

I'he K(P(r)) profile derived from the PREM model of Dziewonski and Anderson (1981} appears
to be roughly lincar ns shown in Fig.3.

A linear relation between bulkmodulus and pressure as suggested by Fig. 3, is also obtained using
the following power law parameterization for the bulkmodulus in terms of the density K(p).

e o , _dIn(K) _dK y

K=Cp" =W(R)=1n(C)+nn(p) =>n= Tty — 4P Ky {H4)
where C is a constant. 'The constant pressure derivative in this model implies a linear pressure
relation K(P) = Ko+ K,P. 'This appears to approximate the distribution of K in particular in the
lower mantle as deteruined from seismological data in the PREM model. I, = 4 for the magnesinm-
iron sillicntes (Mg, Fe)SiO; (perovskite) and dense oxides (Mg, Fe)O (wilstite), representative for the
parth's deep mantle. '

Mfint: evaluate the integral expression for pressure P(2) = ) p_qd:' by substitution of (47).
M An equation of state directly relating the density or specific volume Lo pressure can be ierived from such an
cmsatz! of & linear pressure dependence K = Iy + Ko P as shown in the following,
| dp 1 1 oV = 1

1
S e e A = I Py — 55
l'“[P I b VP " vl [Kn l"[\”l)vdv (,,)
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Figure 3: Incompressibility profile derived from the PREM model.

problem: 20 Derive an explicit erpression for the pressure dependent density from the Murnaghan equation
uf state (58).
Answer:

o VK,
P(P) =pu( [20 + 1) (59)

problem: 21 [n the foregoing we have seen that a simple model with uniform incompressibility und grawty
K = Ky and g = g0 leads to physically impossible solutions. In a refined version of this model, applied to the
Earth’s mantle, g = gy i3 maintained (compare Fig.1}, and K 13 parameterized using the powerlew relation
(54).

Derive the following density profile for the model corresponding to (54).

w4
PotoZ
p(r) = po (l +(n— l)“fg—)
0
where = = 1 — r 13 the depth coordinate and the 0 subscript refers to zero pressure conditions. Note that the
singularity for poquz/ Ko = 1 problem 18 is absent in this model.

(60)

PP Vo Yo Vo
—_—— = - —dV' = —dV' =In[ = 6
_/n l\-f) F h-‘,’l), v v,f L V;f n ( v) |63 )
Substitution in the integral over pressure of Ko + K4 P = 1, de = K\dP' gives,
Tp=lg bR P 1 e 1 Ko + K;IP HJ o
“7—3—_'"1 S =]Il v .'|.l:|
sy I‘I) £ hﬂ h” ¥

KiP (Vo _ Ko (Ve "
e T (T/‘) - P ((V) - (38)

I'his relation is known as the Murnaghan equation of state {EOS).
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problem: 24 Derve (67) by integration of the W-A equation (66).

In (67) the gravity acceleration g depends on the density distribution p(r) in the lefthand side.
Therefore the density profile can not be simply obtained from a seismologically determined ®(r)
profile and a single evaluation of the integral in (67). The expression represents an integral equation
that can be solved iteratively as specified in problem 25.

problem: 25 Assume that a seismic parameter profile for the mantle ©(r), obtained from seismic travel
times, t3 available. Investigate how (67) can be used to compute a sequence of mantle density profiles
pUNry,i = 1,2,... in an iterative procedure, by succesive substitution. How would you define a sturting
profile p\V(r) for this itertive procedure?

Hint: Substitute the density profile for iteration number 7 in the grawvty acceleration in the righthand side of
(67} for the computation of an updated profile j + 1. This is an erample of a general solution strategy for
non-linear problems known as ‘succesive substitution’ or Picard ileration.

Williamson and Adams (1923) used the iterative scheme in problem 25 to test the hypothesis that
the mass concentration towards the Earth’s centre is completely explained by compression of a
homogeneous self-gravitating sphere. They showed that integrating (67) from a surface value of
3.3 10° kg/mn® results in unrealistically high density values for depths greater than the core-mantle
boundary. This way they concluded that an inhomogeneous earth with a dense, compositionally
distinct core, probably iron-nickle, was required by the observations. The necessary multiple inte-
grals in the evaluation of (67) had to be computed by means of graphical approximation methods
in 1923, several decades before the advent of electronic computers.

In a later analysis Bullen (1936) showed that the assumption of a homogeneous selfcompressing
mantle described by the W-A equation, and a chemically distinct dense core, leads to unrealistically
high values of the moment of inertia for the core I, = fM.RZ, with a prefactor value f ~ 0.57
greater than the value of a core with uniforin density, 0.4. Since this would imply a density decrease
towards the centre Bullen concluded that the applicability of the W-A model for the whole mantle
can not be maintained and that instead a distinct mantle transition layer, labeled C-layer, must be
included between the upper and lower mantle proper, related to transitions in mineral phase and /or
composition {Bullen, 1975).

problem: 28

1. Derve the following equation for the temperature distribution of a W-A layer {see Appendiz A.3),

i _ My (68)

dr h o"p

where e and ep are the thermal repansion coefficient and the specific heat at constant pressure.
Hint: Use the differential for the vntropy,

s as
. ere (GO}
WS (;-—_)_F)P dl + ((-_—-)P)Irdp i)

and the thermodynamie relations: (0S/0T)p = cp/T and (0S/0P)y = —n/p.
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2. Derive the erpression for the temperature profile for an adiabatic layer, sometimes referred to as the
‘adiabat’, by solving equation (68),

T(r) = T(R) exp ( / X g dr’) (70)

The temperoture ertrapoluted to the surface, Tp = T(R) is known as the potential temperature of the
layer. The quantity Hr = (ag/cp)™" is known as the thermal scale height of the layer.

A. Derive an expression from (70) for the special case with a constant value of the scale height parameter,

The W-A equation for the density of an adiabatic layer can be generalized introducing the Bullen
parameter p which is used as a measure of the departure of the actual density/temperature profile
from an adiabat. This is done by writing,

D dp

7r) = i (71)

where 7(r) has been substituted for the constant value (= 1) in the W-A equation.

2.7 Current density models

The concept of an adiabatic layer was essential when no independent determinations for the density
dlistribution were available and the W-A equation was used to compute p(r) for given values of the
seismic parameter B(r) determined from seismological observations (Bullen, 1975).

During the 1970s a radial density distribution has been obtained for the Earth from inversion of
seistnological observations, incorporating spectral analysis of the Earth’s eigenvibrations, under the
constraints of the given values for M and 7. This, together with seisinic velocities determined from
bodywave traveltimes and surfacewnve dispersion, has resulted in the Preliminary Reference Earth
Muodlel (PREM), (Dziewonski and Anderson, 1981).

Since p(r) can be determined from analysis of the earth’s normal modes (rudial eigenvibrations)
the ‘adinbaticity’ of the mantle is no longer assumed.

The degree of *adiabaticity’ is used in numerical modelling experiments as a dingnostic for the
dynamic state - where a high degree of adiabaticity indicates vigorous thermal convection and
predominantly convective heat transport (van den Berg and Yuen, 1998, Matyska and Yuen, 2000,
Bunge et al., 2001).

Usially the outcome of such experiments shows that the upper and lower mantle separately
are approximately adinbatic - away from boundary layers were conductive trangport dominates. In
recent years models of the deep lower mantle have hecome popular were a compositionally distinet
dense hayer oceupies the bottom 30% (ronghly) of the lower mantle {Kellog et al., 1999, Albarede
and van der Hilst, 2002).
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Starting from these anchor points the temperature is then extrapolated from both sides to the
core mantle boundary at 2000 km depth. For this temperature extrapolation assumptions have to
be made about the dominant heat transport mechanism and in this case it is assumed that heat
fransport operates mainly through thermal convection. This will be further investigated in later
sections dealing with heat transport in the Earth's mantle.
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Figure 7: Schematic mdial temperature distribution m the mantle and core, constrained by major phase
transitions. (UM-upper mantle, LM lower mantle, OC ounter core, IC inner core). The tempernture of the
npper/lower mantle boundary is constrained by the v-spinel to postspinel phase transition at 660 km depth.
The tempernture at the inner/outer core boundary at 5150 km depth (radivs 1220 km} is constrained by the
melting temperature of the hypothetical core ‘Fe-0-S’ alloy. The right hand frame shows a schematic core
temperature distribution (geotherm) labeled ‘CORE ADIABAT’ in the liquid outer core versus pressure and the
melting curve (liguidus) of the core ‘Fe-0-§° alloy. (CMB core-mantle boundary, ICB inner core boundary).
The ICB 18 determined by the intersection of the hquidus and the geotherm. During core cooling the ICB
moves ountward as the inner core grows by crystallisalion,

problem: 28 Estunate the temperature near the bottom uof the mantle by adiabatic vctrapolation of the
temperature Togg ~  1900K of the phase transition near 660 km depth, to the depth of the core mantle
boundary, using the genernl expression for the adiabat in a homogencous layer.

fhnts: apply the result of problem 26 and assume uniform values of the ‘scale height parameter’ Hp
(rg/ep)™' with o = 2-107%K™?, g = (0ms™2, ¢p = 12500kg 'K~ Further: approzimate the adiabat by
« linear depth function, in agreement with the schematic diagram of Itg. 7, to obtain a nntform adiabatic
temperature gradient,
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