G203-1312 Paulssen

Exam Introduction to seismology and seismics, Part 2

January 26, 2010, 9:00-12.00

1. Explain how subsurface reflectors (i.e. interfaces of the seismic velocity structure) can be imaged using multichannel reflection seismics.

Use (and explain) the terms

- * common midpoint (CMP) gather,
- * normal move out (NMO),
- * common midpoint stacking,
- * root mean square (RMS) velocity,
- * Dix equation, and
- * migration.
- 2. Sketch the ray paths and the travel time curves for the following velocity structures:
 - (a) A seismic velocity structure with a gradual velocity increase as a function of depth.
 - (b) Similar to (a) but with a sharp velocity increase at certain depth.
 - (c) Similar to (a) but with a low velocity zone.
- 3. An earthquake is recorded by a large number (N) of seismic stations. Explain how the origin time and the location of the earthquake can be determined from the P-arrival times at the stations for a given seismic velocity structure. Show the procedure for the case of a homogeneous subsurface structure.
- 4. (a) Explain the terms dispersion, phase velocity and group velocity.
 - (b) Give expressions for the phase velocity (c) and the group velocity (U). Find the relation between c and U and the wavelength (λ) .
 - (c) The figure below shows Love wave phase and group velocity curves for a seismic model of a layer over a halfspace.
 - Which of the two curves represents the phase velocity?
 - Give estimates of the S-wave velocities of the layer and the halfspace. Explain your answers.

5. (a) Give the types of faulting for the focal mechanisms shown below. The plane with an east-west strike is the fault plane. In case of strike-slip faulting specify whether it is left lateral or right lateral.

(b) Explain the terms magnitude, intensity and seismic moment.