Midterm exam GEO3-4301 Soil and Water Pollution 10 January 2006 9:00 – 11:00 h

General remarks:

- This exam contains five questions.
- Please answer concisely.
- Answers in English or in Dutch are allowed.
- At the end of the examination hand in all your answer sheets.
- Write down your name or student number on all answer sheets.
- Note that after this exam, there will be an introduction to the second assignment, so please be back at 11.00 h.
- Define the following environmental terms:
 - a. 2:1 clay mineral and a second of the seco
 - b. Bioaccumulation
 - c. Alpha radiation
 - d. Phosphate fixation
 - e. Base saturation
 - f. Ligand
 - g. Mechanical dispersion
 - h. Peclet number
 - i. LNAPL
 - j. Retardation factor

(20 points)

The figure below depicts a schematic overview of the N cycle in ecosystems.

Name the processes 1 - 5 of the N cycle. (10 points)

 Discuss the speciation and fate of zinc in river water and river sediments downstream from a mine tailing.

(12 points)

4. A spill of 159 litres of a DNAPL spreads slowly in a shallow aquifer with a porosity of 28 %. The residual concentration of the DNAPL in the aquifer material is 12 %. Calculate the maximum aquifer volume that will be contaminated by the DNAPL.

(8 points)

- 5. Flocculation is an important process that controls the fate of sediment and sediment-associated pollutants in surface water systems.
 - a. Discuss the role of the chemical composition of surface water for flocculation

The Stokes' equation is used to calculate the settling velocity of sediment. The Stokes' equation reads:

$$w_s = \frac{1}{18} \frac{(\rho_s - \rho_w) g d^2}{\mu}$$

- b. Name two assumptions that are made for this Stokes' equation.
- c. What parameters in the above Stokes' equation are affected by the process of flocculation and what will be the effect on the settling velocity?

The general one-dimensional equation for sediment transport and deposition is:

$$\frac{\partial C}{\partial t} = -\overline{u}_x \frac{\partial C}{\partial x} + D_x \frac{\partial^2 C}{\partial x^2} - \frac{\alpha w_s}{H} C$$

Where
$$\alpha = 1 - \frac{\tau_b}{\tau_{b,d}}$$

- d. Discuss how flocculation of sediment possibly affects the value of α .
- e. In a 150 cm deep stream, which flows with an average flow velocity of 0.1 m s⁻¹, the value of α is 0.6 and the average settling velocity of the sediment is 1.2 m d⁻¹. Calculate the distance needed to reduce the sediment concentration in the stream water by 30 % if dispersion can be neglected.

(30 points)