Midterm exam GEO3-4301 Soil and Water Pollution
 11 January 2005 9:00-11:00 h

1. Give a definition of the following environmental terms
a. Octanol-water partition coefficient
b. Diffuse double layer
c. Colloids
d. Phosphate fixation
e. Aliphatic chlorinated hydrocarbons
f. Non-point source
g. Dispersion
h. LNAPL
i. Beta radiation
j. PZC
(20 points)
2. Discuss in brief the importance of the redox potential and pH for the environmental behaviour of :
a. heavy metals.
b. aluminium
c. nitrogen
(15 points)
3. Give three examples of natural radionuclides that do not belong to the three radioactive decay series (Uranium-238, Uranium-235, and Thorium-232 series).
(10 points)
4. In turbulent flowing waters the bottom shear stress is given by:
$\tau_{b}=\rho_{w} g H S$
and the vertical sediment deposition flux by
$J_{s}=\left(1-\frac{\tau_{b}}{\tau_{b, d}}\right) w_{s} C$
The vertical settling velocity of sediment in stagnant water was determined at $4.010^{-6} \mathrm{~m}$ s^{-1}. In river water entering a floodplain section, the sediment concentration amounts to $80.0 \mathrm{mg} \mathrm{l}^{-1}$. Calculate the sediment concentration at 4 km downstream from this location given the following information: slope of the water table $=0.0000025$, water depth $=1.8$ m , water flow velocity $=0.25 \mathrm{~m} \mathrm{~s}^{-1}$, gravitational acceleration constant $=9.8 \mathrm{~m} \mathrm{~s}^{-1}$, density of water $=1000 \mathrm{~kg} \mathrm{~m}^{-3}$, critical shear stress for sedimentation $=0.8 \mathrm{~N} \mathrm{~m}^{-2}$.
Assume that the sediment remains mixed over the water column.
(20 points)
5. A column experiment is carried out to determine the benzene adsorption characteristics of a sediment. For this purpose, a 1 m long cylinder (diameter $=0.45 \mathrm{~m}$) of inert material is filled with sediment (porosity $=0.3$ and bulk density $=1500 \mathrm{~kg} \mathrm{~m}^{-3}$), through which a solution of NaCl and benzene is percolated. The initial concentration of the percolate is $10 \mathrm{mg} \mathrm{l}^{-1}$ for chloride and $8 \mathrm{\mu g} \mathrm{l}^{-1}$ for benzene. The cylinder is and. The following graph shows the breakthrough curves of chloride and benzene.

a. Calculate the flow velocity through the column in $\mathrm{m}^{3} \mathrm{day}^{-1}$.
b. Explain the form of the breakthrough curves of both chloride and benzene
c. Calculate the distribution coefficient for benzene given the formula:

$$
R_{f}=1+\frac{\rho_{b}}{n} K_{d}
$$

(25 points)

