# Exam GEO4-4420 Stochastic Hydrology

## Monday April 18 13.30-16.30 Ruppert Rood

- (3 points) Provide 5 reasons why it is advantageous to take uncertainty into account in hydrological modelling.
- 2. (6 points) Consider the following cumulative probability distribution function describing the rainfall intensity Z (mm/d) of a single rainfall event in a small catchment (see also Figure):



- a. What is the median rainfall intensity (calculate, not read from Figure)?
- b. Give an expression for the probability density function of rainfall intensity.
- c. Assuming that the infiltration capacity of the small catchment is homogeneous and equal to 20 mm/d, what is the probability that during a rainfall event runoff is generated?

(2 points) We consider a wide-sense stationary random function with the following spectral density function (see also Figure):

$$G_Z(\omega) = 1 - \omega^2$$

What is the variance of the random function?



- 4. (5 points) Consider a river where the mean and variance of yearly maximum discharge are respectively given by:  $\mu_Y = 1445 \text{ m}^3/\text{s}$  and  $\sigma_Y^2 = 176646 \text{ m}^6/\text{s}^2$ . These values have been obtained based on 80 years of observations.
- a. Calculate the parameters a and b of the Gumbel distribution fitted to the data using the method of moments.
- Estimate the value of flood that occurs on average every 1000 years and its 95% confidence interval.
  - c. What is the probability that this flood occurs at least once in the next 30 years?
  - 5. (8 points) Consider the following isotropic covariance function of a wide-sense stationary function with mean

$$C_Z(h) = \exp(-h/4)$$

- $\mu_z = 12$ . Observations have been made at locations z(x,y) = z(2,2) = 8 and z(x,y) = z(4,5) = 17.
- a. Use simple Kriging to predict the value of Z(x) at location (x,y) = (5,4) and estimate the prediction error variance.
- (b.) If the mean was not known: which type of kriging would you use? Are there additional advantages to this type of kriging?

6. (8 points) Time series analysis/Kalman Filtering: Consider the following stochastic model describing monthly concentration of nitrogen  $c_t$  (in mg/l) in a lake with time steps of one month (index t is the month number):

$$C_{i} = 0.6C_{i-1} + 12q_{i} + W_{i}$$

With:  $q_t$  the monthly nitrogen input into the lake (10<sup>3</sup> kg/month) and  $W_t$  a model error (system noise). The system noise is a white noise process.

The nitrogen input  $q_k$  is given in the following Table:

| Time (month     | 1 | 2 | 3 | 4 | 5 | 6 | 7  | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
|-----------------|---|---|---|---|---|---|----|---|---|----|----|----|----|----|----|
| numbers)        |   |   |   |   | ļ | L |    |   |   |    |    |    |    |    |    |
| N input (103 kg | 0 | 0 | 0 | 0 | 0 | 4 | 12 | 9 | 8 | 2  | 3  | 4  | 2  | 1  | 0  |
| /month)         |   |   | ĺ |   |   |   |    |   |   |    |    |    |    |    |    |

Before month number 6 there is no input of nitrogen  $(q_i=0, t<6)$ . Therefore, for t<6 the model, describing the monthly concentration  $C_t$ , equals an ARIMA(1,0,0) model.

a. Below three autocorrelation functions (ACF) are given. Which one belongs to the ARIMA(1,0,0) model  $q_i$ ?







b. The concentration of nitrogen at month number 1 is given: c1 = 20 mg/l. The variance of the system noise is  $\sigma_{ii'}^2 = 36$  mg  $^2/l^2$ . Calculate the forecast for the month numbers 2, 3 and 4 ( $\hat{c}_{2|i}$ ,  $\hat{c}_{3|i}$  and  $\hat{c}_{4|i}$ ) using the ARIMA(1,0,0)-model, and the corresponding variance of the forecast error ( $\sigma_{\hat{c}_{2|i}}^2$ ,  $\sigma_{\hat{c}_{3|i}}^2$  and  $\sigma_{\hat{c}_{4|i}}^2$ ). The forecast error variance for month number t is:  $\sigma_{\hat{c}_{i'|i}}^2 = (0.6)^2 \cdot \sigma_{\hat{c}_{i'-1|i|}}^2 + \sigma_{ii'}^2$ 

At month number 5 the estimate of the concentration is:  $\hat{c}_{5|5} = 10 \text{ mg/l}$ . The corresponding error variance is:  $P_5 = \sigma_{\hat{c}_5|5}^2 = 9 \text{ mg}/2/12$ . At t=8 and t=14 observations  $y_t$  are taken. We have  $y_8 = 165 \text{ mg/l}$  and  $y_{14} = 79 \text{ mg/l}$ . The variance of the observation error is the same for both times:  $\sigma_{V}^2 = 16 \text{mg}^2/1^2$ . The measurement error  $v_t$  is a white noise process.

c. Apply the Kalman filter to obtain the optimal estimate  $\hat{c}_i$ , and the corresponding error variance  $P_t = \sigma_{\hat{c}_{in}}^2$  for all time steps t = 6,...,15.

## **Equation sheet Stochastic Hydrology**

Probability density  $f_z(z)$  and cumulative probability  $F_z(z)$ 

$$F_{Z}(z) = \Pr[Z \le z] = \int_{-\infty}^{z} f_{Z}(z) dz$$
$$f_{Z}(z) = \frac{dF_{Z}(z)}{dz}$$

Note: For all integral involving infinity, the infinity sign is replaced by a maximum or minimum value if Z is bounded. For instance, if Z has a minimum value of 0 (e.g. hydraulic conductivity or concentration) the cumulative probability distribution function becomes:

$$F_Z(z) = \Pr[Z \le z] = \int_0^z f_Z(z) dz$$

Some probability distributions:

### **Discrete**

Binomial: Probability of n events in N trials, with probability p per trial:

$$\binom{N}{n} p^n (1-p)^{N-n}$$

$$n = 0,1,2,...,N$$

Geometric: Probability of number of trials n until the next occurrence of an event with probability p per trial:

$$(1-p)^{n-1}p$$

### Continuous

Gaussian:  $f_Z(z) = \frac{1}{\sigma \sqrt{\pi}} e^{-[\frac{1}{2}(z-\mu)^2/\sigma^2]}$ 

Exponential:  $f_z(z) = \lambda e^{-\lambda z}$ 

Mean  $\mu_z$ , variance  $\sigma_z^2$  and co-efficient of variation  $CV_z$  of a random variable Z

$$\mu_Z = E[Z] = \int_{-\infty}^{\infty} z f_Z(z) dz$$

$$\sigma_Z^2 = E[(Z - \mu_Z)^2] = \int_{-\infty}^{\infty} (z - \mu_Z)^2 f_Z(z) dz = \int_{-\infty}^{\infty} z^2 f_Z(z) dz - \mu_Z^2$$

$$CV_z = \frac{\sigma_z}{\mu_z}$$