Examination Fluid Mechanics I (GEO3-4307) November 2009

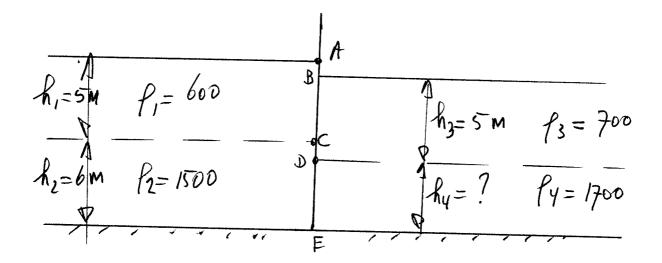
1. Left and right of a gate are two layers of fluid $(g = 10 \text{ m/s}^2)$:

$$\rho_1 = 600 \text{ kg/m}^3$$

$$h_1 = 5 \text{ m}$$

$$\rho_2 = 1500 \text{ kg/m}^3$$
,

$$h_2 = 6 \text{ m}$$


$$\rho_3 = 700 \text{ kg/m}^3$$
,

$$h_3 = 5 \text{ m}$$

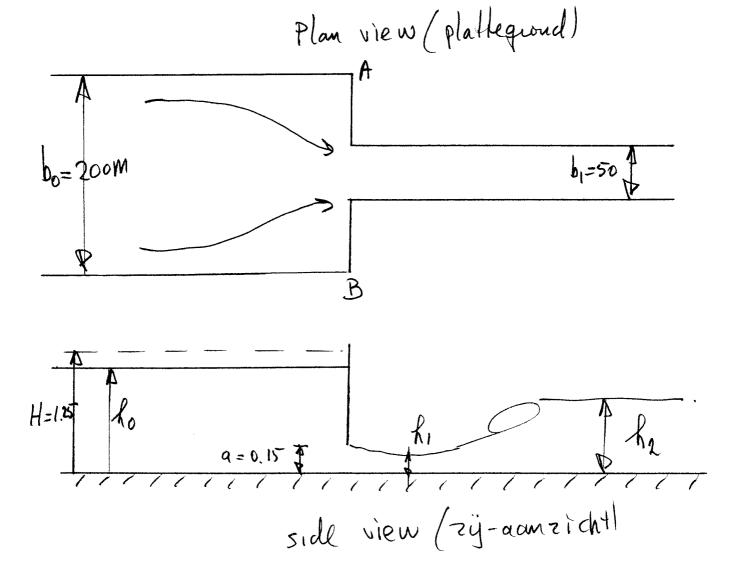
$$\rho_4 = 1700 \text{ kg/m}^3$$
,

$$h_4 = ?$$

- a) compute the water depth h_4 at which the fluid pressure at the bottom on both sides of the gate is equal.
- b) compute the resulting pressures at all interfaces (points A, B, C, D, and E) and make a plot of the pressure distribution.
- c) compute the total resulting horizontal fluid force at the gate.

A channel with width $b_0 = 200$ m changes into a structure with a gate. The width of the gate is equal to the width $b_1 = 50$ m of the downstream channel.

Other data:

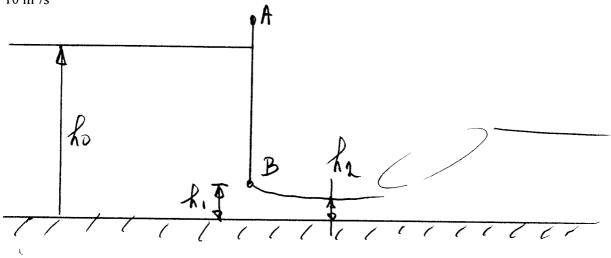

 H_0 = energy height upstream = 1.25 m

a = opening of gate = 0.15 m

μ = contraction coëfficiënt = 0.66

 $g = 10 \text{ m/s}^2$

- a. Make a plot of the energy line along the total traject
- b Compute water depth h₁
- c. Compute discharge Q
- d. Compute the water depth h₂
- e. Compute the water depth ho
- f. Compute the force at the wall AB (including the gate)



3. A channel with a horizontal bottom has a gate AB at the end with opening h_1 . The velocity head upstream of the gate is measured by a Pitot-tube and is 0.02 m. Given are:

 h_0 = water depth upstream = 1 m

 μ = contraction coefficient= 0.6

 $g = 10 \text{ m}^2/\text{s}$

- a) what is the velocity v_o upstream of the gate and what is the discharge q?
- b) what is the depth h_2 and what is the depth h_1 under the gate; what is the Froude number at point 2
- c) compute the force at the gate?
- d) The pressures along the gate are measured in 7points

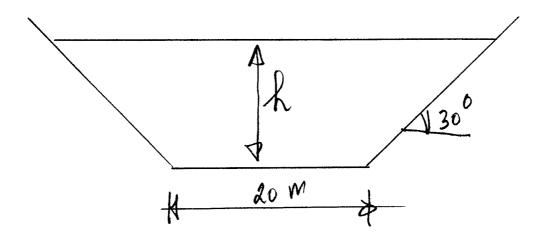
z1=0.1 m p1=hydrostatic

z2=0.2 m p2=hydrostatic

z3=0.3 m p3= hydrostatic

z4=0.4 m $p4=3300 \text{ N/m}^2$

z5 = 0.5 m $p5 = 3700 \text{ N/m}^2$

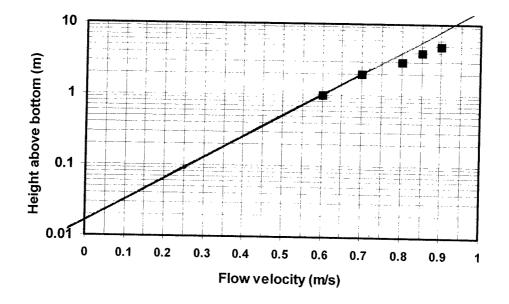

z6=0.6 m $p6=3900 \text{ N/m}^2$

z7=0.7 m $p7=3400 \text{ N/m}^2$

What is the force at the gate based on the pressure measurements?

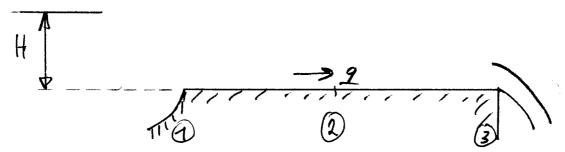
What is the hydrostatic force at the gate?

4. A unform river has a trapezoidal cross-section with h= 4.5 m I=0.0001, B = 20 m, g= 10 m/s², side slope angle = 30 degrees, viscosity= 0.00001 m²/s



- a) compute the discharge Q if $k_s = 0.1$ m; what is hydraulic roughness regime?
- b) compute the discharge Qif $k_s = 0.0001 \text{ m}$; what is hydraulic roughness regime
- c) what is the depth h, if Q= 200 m^3/s and k_s = 0.1 m

5. Flow velocity measurements have been carried out in a river with water depth h= 6 m, as follows:


$$z1= 1 m$$
 $u1= 0.6 m/s$
 $z2= 2 m$ $u2= 0.7 m/s$
 $z3= 3 m$ $u3= 0.8 m/s$
 $z4= 4 m$ $u4= 0.85 m/s$
 $z5= 5 m$ $u5= 0.9 m/s$

viscosity= 0.000001 m²/s, kappa $\kappa = 0.4$

- a) what is the depth-averaged flow velocity and at what height above the bottom is the local velocity equal to the depth-averaged velocity?
- b) compute the bed-shear velocity u_* if the hydraulic roughness is $k_s = 0.5$ m using the measured velocity in the lowest point (z1) only?
- c) compute the bed-shear velocity u_* and the hydraulic roughness k_s using the measured velocities in the lowest two points (z1 and z2)
- d) same, using all points; fit a line through the point (by eye)

6. A deep reservoir is connected to a channel with a horizontal bottom Free overflow at end of channel $q = 0.5 \text{ m}^2/\text{s}, g = 10 \text{ m/s}^2$ H =0.6 m, C = 100 m^{0.5}/s

- a) what is the water depth h3 at the end of the channel and at the entrance h1 of the channel?
- b) what is the length of the channel?
- c) what is the water depth h2 in the middle of the channel?

7. Theoretical questions

- a) Why is the fluid pressure in a uniform river hydrostatic?
- b) When is it allowed to use the Bernoulli equation and when the momentum equation?
- c) What is the difference between the momentum equation of Euler and the Reynolds equations?
- d) What three terms do we have in the Bernoulli equation?
- e) How can a fluid particle describe a curved path? Which type of forces do occur?
- f) The Froude number is the ratio of
 The Reynolds number is the ratio of
- g) How many water depth regimes are possible for a given discharge q? What is the most essential feature of each regime? When is there only one water depth possible?
- h) What is a hydraulic jump and when does it occur?

 How can you manipulate a hydraulic jump (upstream or downstream)?

 The depth upstream is 0.05 m, the velocity upstream is 3 m/s.

 The depth downstream is 0.3 m; the velocity downstream is 0.5 m/s.

 What is the energy loss (in meters)?
- i) In what type of flow regime does a viscous sublayer occur? What is the thickness of the viscous sublayer: 0.1, 1 or 10 mm?
- j) What is a static pitot-tube? What is a dynamic pitot-tube?
- k) The bed of river is covered by grass. How can yo determine the effective roughness k_{s} of it?
- l) The flow velocities near the surface of a river often are smaller than those at lower levels. What are possible cause for this?
- m) The dimension of the Chezy coefficient is m^{0.5}/s. Why?
- n) The Belanger equation can be used to compute the water level changes in a river (upstream of a weir). Which three forces are included?
- o) You are in a boat (length=20 m) on a small river attached to an anchor. The boat does not move. you have a rope, a stone, a watch, a piece of wood and a ruler with a length of 0.5 m. How can you estimate the discharge q per unit width?

