EXAMINATION FLUID MECHANICS I, 7 november 2008

- 1. On the left side of the gate AB there are 3 layers of fluid with densities $\rho_1 = 800 \text{ kg/m}^3$, $\rho_2 = 1000 \text{ kg/m}^3$, $\rho_3 = 1200 \text{ kg/m}^3$ and layer thickness $h_1 = 3 \text{ m}$, $h_2 = 5 \text{ m}$, $h_3 = 2 \text{ m}$. On the right side of the gate AB there is 1 layer of fluid with $\rho_4 = 1400 \text{ kg/m}^3$ and thickness h_4 .
 - a. Compute the thickness h_4 when the fluid pressure at the bottom on both sides of the gate is equal.
 - b. Make a plot of the resulting pressure distribution at the gate and compute the net pressure at each interface.
 - c. Compute the total horizontal resulting pressure force at the gate.

2 A channel with a horizontal bottom has a gate AB at the end with opening h₁. The velocity head upstream of the gate is measured by a Pitot-tube and is 0.02 m

Given are:

 h_0 = water depth upstream= 1 m

 μ = contraction coefficient =0.66

 $g = 10 \text{ m/s}^2$

- a) what is the velocity v_0 upstream of the gate and what is the discharge q?
- b) what is the depth h₂ and what is the depth h₁ under the gate; what is the Froude number at point 2
- c) what is the water depth h₄
- d) Make a sketch of the energy-line and compute the total energy loss between points 0 and 4
- e) Compute the force at the gate?
- f) The pressure along the gate is measured in 7 points (at 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 and 0.7 m below the water surface); the pressure in the first 3 points is hydrostatic; the pressure in point 4 is p_4 =3300 N/m², p_5 =3700 N/m², p_6 =3900 N/m², p_7 =3400 N/m², what is the force at the gate based on the measured pressures?
- g) how can you compute the water depth in point 3 just in front of the hydraulic jump? What do you have to know?

3. Given: uniform flow in a channel with trapezoidal cross-section:

h= 4.5 m
$$g = 10 \text{ m/s}^2$$

 $I = 10^{-4}$ viscosity= 10^{-6} m²/s
B= 20 m side slope angle=30 degrees

- a. Compute discharge Q when $k_s=0.1$ m?
- b. Show that flow is in the hydraulic rough regime.
- c. Compute discharge when bed roughness is $k_s=0.0001$ m?
- d. What is the flow velocity at the surface in the middle of the channel when k_s =0.1 m?
- e. what is the water depth h if the discharge under a) is twice as large?

4. Flow velocity measurements have been carried out in a river with water depth h=5 m (υ =0.000001 m²/s; kappa=0.4), as follows::

$$z_1$$
= 1 m u_1 = 0.60 m/s
 z_2 = 2 m u_2 = 0.70 m/s
 z_3 = 3 m u_3 = 0.80 m/s
 z_4 = 4 m u_4 = 0.85 m/s
 z_5 = 5 m u_5 = 0.90 m/s

- a) What is the depth-averaged flow velocity and at what height above the bed is the local velocity equal to the depth-averaged velocity?
- b) Compute the bed-shear velocity u_* if the hydraulic roughness is k_s =0.5 m using the measured velocity in the lowest point only (z_1) ?
- c) Compute the bed-shear velocity u_* and the hydraulic roughness k_s based on the measured velocities of the lowest two points z_1 and z_2 ?
- d) Same; using all points; fit a line through the point (by eye)

vertical axis= height above bottom (m); horizontal axis= flow velocity (m/s)

5. A deep reservoir is connected to a channel with horizontal bottom. Free overflow at the end of the channel. Discharge per unit width $q = 0.5 \text{ m}^2/\text{s}$ ($g = 10 \text{ m/s}^2$). H=0.6 m; C=100 m^{0.5}/s

- a) What is de water depth at the end of the channel (point 3)?
- b) What is the water depth at the entrance of the channel (point 1)?
- c) What is the length of the channel?
- d) wat is de water depth in the middle of the channel (point 2)?
- e) what is the Chezy-value of the downstream section 2-3 to raise the water level in point 2 by 0.05 m?
- f) What is the water level in the reservoir to force the discharge through the channel when section 2-3 has the new Chezy value? How can you compute this? Describe the method?

6. Theoretical questions

- a. When is the fluid pressure hydrostatic?
- b. When is it allowed to apply the law of Bernouilli bween two points When is it allowed to apply the momentum equation?
- c. What is the difference between the momentum equations of Euler and Navier-Stokes?
- d. Which three terms do we have in the Bernouilli equation?
- e. What is the principle of the Pitot-tube; make a sketch?
- f. How can a fluid particle describe a curved path? Which forces do occur?
- g. In turbulent flow there are three hydraulic regimes; what is the most essential feature of each regime?
- h. How many water depth regimes are possible for a known, constant discharge q? What is the most essential feature of each regime? When is there only one water depth possible?
- i. When does a hydraulic jump occur? How can you manipulate a hydraulic jump(by changing the boundary conditions at the upper or lower boundary)?
- J Which three forces control fluid mechanics? Which of these three forces is NOT important in uniform river flow? Which of these three forces is NOT important for the flow over a small weir?